HEAL DSpace

A real survival analysis application via variable selection methods for Cox's proportional hazards model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Androulakis, E en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Mylona, K en
dc.contributor.author Vonta, F en
dc.date.accessioned 2014-03-01T01:32:32Z
dc.date.available 2014-03-01T01:32:32Z
dc.date.issued 2010 en
dc.identifier.issn 0266-4763 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20171
dc.subject Cox's proportional hazards model en
dc.subject High-dimensional dataset en
dc.subject Nonconcave penalized likelihood en
dc.subject Survival analysis en
dc.subject Trauma en
dc.subject Variable selection en
dc.subject.classification Statistics & Probability en
dc.subject.other ORACLE PROPERTIES en
dc.subject.other LASSO en
dc.subject.other LIKELIHOOD en
dc.title A real survival analysis application via variable selection methods for Cox's proportional hazards model en
heal.type journalArticle en
heal.identifier.primary 10.1080/02664760903038406 en
heal.identifier.secondary http://dx.doi.org/10.1080/02664760903038406 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Variable selection is fundamental to high-dimensional statistical modeling in diverse fields of sciences. In our health study, different statistical methods are applied to analyze trauma annual data, collected by 30 General Hospitals in Greece. The dataset consists of 6334 observations and 111 factors that include demographic, transport, and clinical data. The statistical methods employed in this work are the non- concave penalized likelihood methods, Smoothly Clipped Absolute Deviation, Least Absolute Shrinkage and Selection Operator, and Hard, the maximum partial likelihood estimation method, and the best subset variable selection, adjusted to Cox's proportional hazards model and used to detect possible risk factors, which affect the length of stay in a hospital. A variety of different statistical models are considered, with respect to the combinations of factors while censored observations are present. A comparative survey reveals several differences between results and execution times of each method. Finally, we provide useful biological justification of our results. © 2010 Taylor & Francis. en
heal.publisher ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD en
heal.journalName Journal of Applied Statistics en
dc.identifier.doi 10.1080/02664760903038406 en
dc.identifier.isi ISI:000280810900011 en
dc.identifier.volume 37 en
dc.identifier.issue 8 en
dc.identifier.spage 1399 en
dc.identifier.epage 1406 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής