HEAL DSpace

A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Isliker, H en
dc.contributor.author Pisokas, TH en
dc.contributor.author Strintzi, D en
dc.contributor.author Vlahos, L en
dc.date.accessioned 2014-03-01T01:32:32Z
dc.date.available 2014-03-01T01:32:32Z
dc.date.issued 2010 en
dc.identifier.issn 1070-664X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20173
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Basic properties en
dc.subject.other Confined plasmas en
dc.subject.other Diffusive process en
dc.subject.other Fusion plasmas en
dc.subject.other Heat transport en
dc.subject.other Heating process en
dc.subject.other High stiffness en
dc.subject.other Ion temperature en
dc.subject.other Ion temperature gradient en
dc.subject.other Ion temperature gradient modes en
dc.subject.other Ion temperature profiles en
dc.subject.other Loading patterns en
dc.subject.other Main characteristics en
dc.subject.other Physical process en
dc.subject.other Physical variables en
dc.subject.other Power-law en
dc.subject.other Self-organized criticality en
dc.subject.other Temporal evolution en
dc.subject.other Cellular automata en
dc.subject.other Criticality (nuclear fission) en
dc.subject.other Pattern recognition systems en
dc.subject.other Plasma confinement en
dc.subject.other Thermal gradients en
dc.subject.other Turbulence en
dc.subject.other Ions en
dc.title A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma en
heal.type journalArticle en
heal.identifier.primary 10.1063/1.3458668 en
heal.identifier.secondary http://dx.doi.org/10.1063/1.3458668 en
heal.identifier.secondary 082303 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/L-T is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3458668] en
heal.publisher AMER INST PHYSICS en
heal.journalName Physics of Plasmas en
dc.identifier.doi 10.1063/1.3458668 en
dc.identifier.isi ISI:000281906300015 en
dc.identifier.volume 17 en
dc.identifier.issue 8 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record