dc.contributor.author |
Gorpas, D |
en |
dc.contributor.author |
Yova, D |
en |
dc.contributor.author |
Politopoulos, K |
en |
dc.date.accessioned |
2014-03-01T01:32:34Z |
|
dc.date.available |
2014-03-01T01:32:34Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0022-4073 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20179 |
|
dc.subject |
Angular discretization |
en |
dc.subject |
Diffusion approximation |
en |
dc.subject |
Finite elements method |
en |
dc.subject |
Fluorescence imaging |
en |
dc.subject |
Galerkin method |
en |
dc.subject |
Radiative transfer equation |
en |
dc.subject |
Spatial discretization |
en |
dc.subject |
Super-ellipsoid models |
en |
dc.subject.classification |
Spectroscopy |
en |
dc.subject.other |
Angular discretization |
en |
dc.subject.other |
Diffusion approximations |
en |
dc.subject.other |
Finite-elements method |
en |
dc.subject.other |
Fluorescence imaging |
en |
dc.subject.other |
Radiative transfer equations |
en |
dc.subject.other |
Spatial discretization |
en |
dc.subject.other |
Spatial discretizations |
en |
dc.subject.other |
Cantilever beams |
en |
dc.subject.other |
Conformal mapping |
en |
dc.subject.other |
Diffusion |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Fluorescence |
en |
dc.subject.other |
Galerkin methods |
en |
dc.subject.other |
Heat radiation |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
Optical properties |
en |
dc.subject.other |
Radiative transfer |
en |
dc.subject.other |
Simulators |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Coupled circuits |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
equation |
en |
dc.subject.other |
finite element method |
en |
dc.subject.other |
fluorescence spectroscopy |
en |
dc.subject.other |
Galerkin method |
en |
dc.subject.other |
imaging method |
en |
dc.subject.other |
inverse problem |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
radiative transfer |
en |
dc.subject.other |
spatial analysis |
en |
dc.subject.other |
three-dimensional modeling |
en |
dc.title |
A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jqsrt.2009.11.006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jqsrt.2009.11.006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
During the last few years a quite large number of fluorescence molecular imaging applications have been reported in the literature, as one of the most challenging aspects in medical imaging is to ""see"" a tumor embedded into tissue, which is a turbid medium, by using fluorescent probes for tumor labeling. However, the forward solvers, required for the successful convergence of the inverse problem, are still lacking accuracy and time feasibility. Moreover, initialization of these solvers may be proven even more difficult than solving the inverse problem itself. This paper describes in depth a coupled radiative transfer equation and diffusion approximation model for solving the forward problem in fluorescence imaging. The theoretical confrontation of these solvers comprises the model deployment, its Galerkin finite elements approximation and the domain discretization scheme. Finally, a new optical properties mapping algorithm, based on super-ellipsoid models, is implemented, providing a fully automated simulation target construction within feasible time. © 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Journal of Quantitative Spectroscopy and Radiative Transfer |
en |
dc.identifier.doi |
10.1016/j.jqsrt.2009.11.006 |
en |
dc.identifier.isi |
ISI:000274069900004 |
en |
dc.identifier.volume |
111 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
553 |
en |
dc.identifier.epage |
568 |
en |