dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Beanland, K |
en |
dc.contributor.author |
Raikoftsalis, T |
en |
dc.date.accessioned |
2014-03-01T01:32:35Z |
|
dc.date.available |
2014-03-01T01:32:35Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1631-073X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20182 |
|
dc.subject |
banach space |
en |
dc.subject |
Bounded Linear Operator |
en |
dc.subject |
Hilbert Space |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Singular Perturbation |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.title |
A weak Hilbert space with few symmetries [Un espace failble de Hilbert avec peu de symétries] |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.crma.2010.10.032 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.crma.2010.10.032 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We construct a separable Banach space with an unconditional basis that is a weak Hilbert space and no block subspace is linearly isomorphic to any of its proper subspaces. We prove that the space Hwt, satisfies these properties by showing it is strongly asymptotic l(2) and that every bounded linear operator on x(wh) is a strictly singular perturbation of a diagonal operator with respect to the unit vector basis. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. |
en |
heal.publisher |
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
en |
heal.journalName |
Comptes Rendus Mathematique |
en |
dc.identifier.doi |
10.1016/j.crma.2010.10.032 |
en |
dc.identifier.isi |
ISI:000285675300012 |
en |
dc.identifier.volume |
348 |
en |
dc.identifier.issue |
23-24 |
en |
dc.identifier.spage |
1293 |
en |
dc.identifier.epage |
1296 |
en |