HEAL DSpace

Accelerating an inexact Newton/GMRES scheme by subspace decomposition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pashos, G en
dc.contributor.author Koronaki, ED en
dc.contributor.author Spyropoulos, AN en
dc.contributor.author Boudouvis, AG en
dc.date.accessioned 2014-03-01T01:32:36Z
dc.date.available 2014-03-01T01:32:36Z
dc.date.issued 2010 en
dc.identifier.issn 0168-9274 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20186
dc.subject Bratu en
dc.subject Eigenproblem en
dc.subject GMRES en
dc.subject Lid-driven cavity en
dc.subject Navier-Stokes en
dc.subject RPM en
dc.subject.classification Mathematics, Applied en
dc.subject.other Eigenproblem en
dc.subject.other Eigenspaces en
dc.subject.other Element method en
dc.subject.other Iterative solvers en
dc.subject.other Lid-driven cavities en
dc.subject.other Navier Stokes en
dc.subject.other Newton iterations en
dc.subject.other Newton's methods en
dc.subject.other Nonlinear algebraic equations en
dc.subject.other Physical model en
dc.subject.other Preconditioners en
dc.subject.other Projection method en
dc.subject.other Subspace decomposition en
dc.subject.other Algebra en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Linear systems en
dc.subject.other Magnetic storage en
dc.subject.other Navier Stokes equations en
dc.subject.other Newton-Raphson method en
dc.subject.other Nonlinear systems en
dc.subject.other Nonlinear equations en
dc.title Accelerating an inexact Newton/GMRES scheme by subspace decomposition en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.apnum.2009.08.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.apnum.2009.08.003 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract A technique for accelerating inexact Newton schemes is presented for the solution of nonlinear systems of algebraic equations that is based on the so-called recursive projection method (RPM) and is built as a computational shell around a Newton/Krylov code. The method acts directly on the 'outer' Newton iteration and does not act as a preconditioner to accelerate the solution of the linear system, i.e. the 'inner' Krylov iteration. The advantage of this approach is that it reduces the number of Newton iterations that are needed for convergence while still performing inexpensive Krylov iterations for the solution of the linear system at each Newton step. The method can be applied in conjunction with a preconditioned or unpreconditioned Krylov iterative solver, serial or parallel, of any discretized physical model. In addition, it enables the extraction of the dominant eigenspace with the help of a low-dimensional Jacobian matrix that is formulated in the course of the iterations making the solution of a large-scale eigenproblem, unnecessary. The proposed approach is applied on the 2-d Bratu problem and the lid-driven cavity problem. The equations are discretized with the Galerkin/finite element method and the resulting nonlinear algebraic equation set is solved by Newton's method. At each Newton step the restarted generalized minimum residual or GMRES(m) procedure is implemented for the solution of the resulting linear equation set. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Applied Numerical Mathematics en
dc.identifier.doi 10.1016/j.apnum.2009.08.003 en
dc.identifier.isi ISI:000277031000008 en
dc.identifier.volume 60 en
dc.identifier.issue 4 en
dc.identifier.spage 397 en
dc.identifier.epage 410 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής