HEAL DSpace

Accurate estimation of evolutionary power spectra for strongly narrow-band random fields

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Schillinger, D en
dc.contributor.author Papadopoulos, V en
dc.date.accessioned 2014-03-01T01:32:36Z
dc.date.available 2014-03-01T01:32:36Z
dc.date.issued 2010 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20187
dc.subject Evolutionary power spectrum estimation en
dc.subject Method of separation en
dc.subject Narrow-band random fields en
dc.subject Space-frequency localization en
dc.subject Spectral representation en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Evolutionary power spectrum en
dc.subject.other Method of separation en
dc.subject.other Narrow bands en
dc.subject.other Space-frequency localization en
dc.subject.other Spectral representations en
dc.subject.other Estimation en
dc.subject.other Power spectrum en
dc.subject.other Spectrum analysis en
dc.subject.other Wavelet transforms en
dc.subject.other Frequency estimation en
dc.title Accurate estimation of evolutionary power spectra for strongly narrow-band random fields en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2009.11.008 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2009.11.008 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract One of the most widely used techniques for the simulation of non-homogeneous random fields is the spectral representation method. Its key quantity is the power spectrum, which characterizes the random field in terms of frequency content and spatial evolution in a mean square sense. The paper at hand proposes a method for the estimation of separable power spectra from a series of samples, which combines accurate spectrum resolution in space with an optimum localization in frequency. For non-separable power spectra, it can be complemented by a joint strategy, which is based on the partitioning of the space-frequency domain into several sub-spectra that have to be separable only within themselves. Characteristics and accuracy of the proposed method are demonstrated for analytical benchmark spectra, whose estimates are compared to corresponding results of established techniques based on the short-time Fourier, the harmonic wavelet and the Wigner-Ville transforms. It is then shown by a practical example from stochastic imperfection modeling in structures that in the presence of strong narrow-bandedness in frequency, the proposed method for separable random fields leads to a considerable improvement of estimation results in comparison to the established techniques. (c) 2009 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2009.11.008 en
dc.identifier.isi ISI:000276629400001 en
dc.identifier.volume 199 en
dc.identifier.issue 17-20 en
dc.identifier.spage 947 en
dc.identifier.epage 960 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής