HEAL DSpace

Adjoint wall functions: A new concept for use in aerodynamic shape optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zymaris, AS en
dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.contributor.author Othmer, C en
dc.date.accessioned 2014-03-01T01:32:36Z
dc.date.available 2014-03-01T01:32:36Z
dc.date.issued 2010 en
dc.identifier.issn 0021-9991 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20189
dc.subject Continuous adjoint method en
dc.subject Sensitivity derivatives en
dc.subject Optimization en
dc.subject Navier-Stokes equations en
dc.subject Turbulence en
dc.subject Wall functions en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Physics, Mathematical en
dc.subject.other DISCRETE ADJOINT en
dc.subject.other UNSTRUCTURED GRIDS en
dc.subject.other TURBULENT FLOWS en
dc.subject.other DESIGN en
dc.subject.other FORMULATION en
dc.subject.other MODEL en
dc.title Adjoint wall functions: A new concept for use in aerodynamic shape optimization en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jcp.2010.03.037 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jcp.2010.03.037 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The continuous adjoint method for the computation of sensitivity derivatives in aerodynamic optimization problems of steady incompressible flows, modeled through the k-epsilon turbulence model with wall functions, is presented. The proposed formulation leads to the adjoint equations along with their boundary conditions by introducing the adjoint to the friction velocity. Based on the latter, an adjoint law of the wall that bridges the gap between the solid wall and the first grid node off the wall is proposed and used during the solution of the system of adjoint (to both the mean flow and turbulence) equations. Any high Reynolds turbulence model, other than the k-epsilon one used in this paper, could also profit from the proposed adjoint wall function technique. In the examined duct flow problems, where the total pressure loss due to viscous effects is used as objective function, emphasis is laid on the accuracy of the computed sensitivity derivatives, rather than the optimization itself. The latter might rely on any descent method, once the objective function gradient has accurately been computed. (c) 2010 Elsevier Inc. All rights reserved. en
heal.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE en
heal.journalName JOURNAL OF COMPUTATIONAL PHYSICS en
dc.identifier.doi 10.1016/j.jcp.2010.03.037 en
dc.identifier.isi ISI:000278415800020 en
dc.identifier.volume 229 en
dc.identifier.issue 13 en
dc.identifier.spage 5228 en
dc.identifier.epage 5245 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής