dc.contributor.author |
Vlyssides, A |
en |
dc.contributor.author |
Barampouti, EM |
en |
dc.contributor.author |
Mai, S |
en |
dc.contributor.author |
Stamatoglou, A |
en |
dc.contributor.author |
Tsimas, E |
en |
dc.date.accessioned |
2014-03-01T01:32:37Z |
|
dc.date.available |
2014-03-01T01:32:37Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0273-1223 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20193 |
|
dc.subject |
Anammox |
en |
dc.subject |
Ferrous iron |
en |
dc.subject |
Nitrogen reduction |
en |
dc.subject |
UASB |
en |
dc.subject |
Vinasse |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
ANAMMOX |
en |
dc.subject.other |
Ferrous iron |
en |
dc.subject.other |
Nitrogen reduction |
en |
dc.subject.other |
UASB |
en |
dc.subject.other |
Vinasses |
en |
dc.subject.other |
Ammonium compounds |
en |
dc.subject.other |
Biogas |
en |
dc.subject.other |
Byproducts |
en |
dc.subject.other |
Distilleries |
en |
dc.subject.other |
Hydraulics |
en |
dc.subject.other |
Hydrogen sulfide |
en |
dc.subject.other |
Industrial water treatment |
en |
dc.subject.other |
Nitrogen |
en |
dc.subject.other |
Nitrogen removal |
en |
dc.subject.other |
Oxygen |
en |
dc.subject.other |
Sulfur |
en |
dc.subject.other |
Sulfur determination |
en |
dc.subject.other |
Wastewater |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
Wine |
en |
dc.subject.other |
Iron |
en |
dc.subject.other |
ammonia |
en |
dc.subject.other |
dinitrogen pentoxide |
en |
dc.subject.other |
ferrous ion |
en |
dc.subject.other |
ferrous sulfide |
en |
dc.subject.other |
hydrogen sulfide |
en |
dc.subject.other |
iron |
en |
dc.subject.other |
nitrogen |
en |
dc.subject.other |
oxygen |
en |
dc.subject.other |
sulfur |
en |
dc.subject.other |
biogas |
en |
dc.subject.other |
chemical oxygen demand |
en |
dc.subject.other |
environmental technology |
en |
dc.subject.other |
industrial waste |
en |
dc.subject.other |
iron |
en |
dc.subject.other |
nitrogen |
en |
dc.subject.other |
retention |
en |
dc.subject.other |
sludge |
en |
dc.subject.other |
sulfur |
en |
dc.subject.other |
wastewater |
en |
dc.subject.other |
anaerobic capacity |
en |
dc.subject.other |
article |
en |
dc.subject.other |
concentration (parameters) |
en |
dc.subject.other |
hydraulic conductivity |
en |
dc.subject.other |
nitrification |
en |
dc.subject.other |
sludge |
en |
dc.subject.other |
temperature |
en |
dc.subject.other |
upflow reactor |
en |
dc.subject.other |
vinasse |
en |
dc.subject.other |
waste water management |
en |
dc.subject.other |
wine |
en |
dc.subject.other |
Biodegradation, Environmental |
en |
dc.subject.other |
Industrial Waste |
en |
dc.subject.other |
Waste Disposal, Fluid |
en |
dc.subject.other |
Water Pollutants, Chemical |
en |
dc.subject.other |
Wine |
en |
dc.title |
Alternative biological systems for the treatment of vinasse from wine |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2166/wst.2010.647 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2166/wst.2010.647 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This work studied alternative treatment schemes for the vinasse wastewater from wine distilleries aiming at overcoming the problems caused by the high nitrogen and sulfur concentrations. A plexiglas laboratory-scale upflow anaerobic sludge blanket (UASB) reactor of 20 L volume that was operated at 45°C and hydraulic retention time 1 d, was included in all the examined systems. System 1 was the conventional UASB reactor, system 2 was the UASB reactor supplemented with iron. System 3 consisted of the UASB reactor supplemented with iron and a CSTR reactor that operated under the following conditions: Diluted Oxygen 1.2 mg/L, Hydraulic Retention Time 1 d, pH 6.7 and Temperature 458C. System 3 aimed at converting ammonium directly to dinitrogen gas under anaerobic conditions but it needed to be preceeded by a first partial nitrification step. All systems had high COD efficiencies over 75%. Ferrous iron addition apart from enhancing the performance of systems 2 and 3, it was able to retain all sulphur content of the wastewater as ferrous sulfide stripping the biogas from hydrogen sulfide. System 3 also managed to meet its goal, since it achieved an 86% nitrogen reduction. Conclusively, system 3 seems to be a very promising environmental technology for the treatment of distillery and winery byproducts, as well as industrial wastewater with high sulfur and nitrogen content. © IWA Publishing 2010. |
en |
heal.publisher |
IWA PUBLISHING |
en |
heal.journalName |
Water Science and Technology |
en |
dc.identifier.doi |
10.2166/wst.2010.647 |
en |
dc.identifier.isi |
ISI:000285237600021 |
en |
dc.identifier.volume |
62 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
2899 |
en |
dc.identifier.epage |
2904 |
en |