HEAL DSpace

An adaptive mechanism for author-reviewer matching in online peer assessment

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giannoukos, I en
dc.contributor.author Lykourentzou, I en
dc.contributor.author Mpardis, G en
dc.contributor.author Nikolopoulos, V en
dc.contributor.author Loumos, V en
dc.contributor.author Kayafas, E en
dc.date.accessioned 2014-03-01T01:32:37Z
dc.date.available 2014-03-01T01:32:37Z
dc.date.issued 2010 en
dc.identifier.issn 1860949X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20196
dc.subject Machine learning en
dc.subject Peer assessment en
dc.subject User matching en
dc.title An adaptive mechanism for author-reviewer matching in online peer assessment en
heal.type journalArticle en
heal.identifier.primary 10.1007/978-3-642-11684-1_7 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-11684-1_7 en
heal.publicationDate 2010 en
heal.abstract Peer assessment techniques are an effective means to take advantage of the knowledge that exists in web-based peer environments. Through these techniques, participants act both as authors and reviewers over each other's work. However, as web-based cooperating environments continuously grow in popularity, there is a need to develop intelligent mechanisms that will retrieve the optimal group of reviewers to comment on the work of each author, with a view to increasing the usefulness that these comments will have on the author's final result. This paper introduces a novel technique that incorporates feed forward neural networks to determine the optimal reviewers for a specific author during a peer assessment procedure. The proposed method seeks to match author to reviewer profiles based on feedback regarding the usefulness of reviewer comments as it was perceived by the author. The proposed mechanism is expected to improve the peer assessment procedure, by making it adaptive to individual user characteristics, increasing the quality of the projects of a group overall and speeding up the peer assessment procedure. The method was tested on educational data derived from an e-learning course and the preliminary results that it yielded are promising. © 2010 Springer-Verlag Berlin Heidelberg. en
heal.journalName Studies in Computational Intelligence en
dc.identifier.doi 10.1007/978-3-642-11684-1_7 en
dc.identifier.volume 279 en
dc.identifier.spage 109 en
dc.identifier.epage 126 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής