HEAL DSpace

An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow-Part II: Numerical implementation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nikolopoulos, A en
dc.contributor.author Atsonios, K en
dc.contributor.author Nikolopoulos, N en
dc.contributor.author Grammelis, P en
dc.contributor.author Kakaras, E en
dc.date.accessioned 2014-03-01T01:32:37Z
dc.date.available 2014-03-01T01:32:37Z
dc.date.issued 2010 en
dc.identifier.issn 00092509 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20200
dc.subject CFBC en
dc.subject CFD en
dc.subject EMMS en
dc.subject Hydrodynamics en
dc.subject Multiphase flow en
dc.subject Numerical analysis en
dc.subject.other CFBC en
dc.subject.other CFD en
dc.subject.other CFD codes en
dc.subject.other Clustering mechanism en
dc.subject.other Co-existing en
dc.subject.other Coarse grid en
dc.subject.other Computational cell en
dc.subject.other Computational grids en
dc.subject.other Control volumes en
dc.subject.other Drag forces en
dc.subject.other Drag model en
dc.subject.other EMMS en
dc.subject.other Eulerian en
dc.subject.other Experimental data en
dc.subject.other Grid density en
dc.subject.other Homogeneous conditions en
dc.subject.other Induced drag en
dc.subject.other Inert materials en
dc.subject.other Isothermal flows en
dc.subject.other Multiscales en
dc.subject.other Numerical grids en
dc.subject.other Numerical implementation en
dc.subject.other Numerical results en
dc.subject.other Numerical tools en
dc.subject.other Particle structure en
dc.subject.other Three dimensional simulations en
dc.subject.other Time evolutions en
dc.subject.other Cluster analysis en
dc.subject.other Computational fluid dynamics en
dc.subject.other Drag coefficient en
dc.subject.other Fluid dynamics en
dc.subject.other Hydrodynamics en
dc.subject.other Inert gases en
dc.subject.other Multiphase flow en
dc.subject.other Numerical analysis en
dc.subject.other Pressure drop en
dc.subject.other Drag en
dc.title An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow-Part II: Numerical implementation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ces.2010.03.053 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ces.2010.03.053 en
heal.publicationDate 2010 en
heal.abstract The arithmetic results from the formulation of an EMMS analysis for the calculation of drag coefficient between the co-existing phases in a CFB riser were implemented in a CFD code and three dimensional simulations of the isothermal flow of a 1.2 MWth CFBC unit were performed. Gas and inert material were modeled in an Eulerian fashion. Except from EMMS scheme, Gidaspow's correlation was also tested for reasons of comparison. Gidaspow's drag model is based on the assumption of homogeneous conditions inside a control volume, whilst the EMMS analysis encounters the effect of spatiotemporal multi-scale gas-particle structures on the induced drag force. Moreover, regarding the grid density, smaller control volumes enhance the validity of the homogeneous assumption. Thus, the effect of the grid density on the numerical results was also examined, using two uniform computational grids, consisting of hexahedral computational cells. Numerical results were compared with available experimental data, as far as the pressure drop along the bed is concerned. A good agreement with the experimental data was achieved in the case of the dense grid (43 mm/cell) using both approaches. In the case of the coarse grid (86 mm/cell), Gidaspow's correlation clearly under-predicted the experimentally measured pressure drop along the bed. This under-prediction was more significant in the lower part of the bed. On the other hand, the implementation of the EMMS scheme increased the accuracy of the model, mainly in the bottom region, since particles clustering was taken into account, a phenomenon which is more evident in latter region. In this area the drag force calculated via EMMS method is considerably less than the drag force calculated by Gidaspow's correlation. Overall, it is proven that the EMMS model is a very promising numerical tool for the more accurate drag force calculation since it reproduces numerically the effect of clustering mechanism on the time evolution of this complicated phenomenon, increasing the accuracy of the predictions without the need of denser numerical grids. © 2010 Elsevier Ltd. All rights reserved. en
heal.journalName Chemical Engineering Science en
dc.identifier.doi 10.1016/j.ces.2010.03.053 en
dc.identifier.volume 65 en
dc.identifier.issue 13 en
dc.identifier.spage 4089 en
dc.identifier.epage 4099 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής