HEAL DSpace

An analytical approach for an adhesive layer in a graded elastic wedge

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Theotokoglou, EE en
dc.contributor.author Stampouloglou, IH en
dc.contributor.author Paulino, GH en
dc.date.accessioned 2014-03-01T01:32:37Z
dc.date.available 2014-03-01T01:32:37Z
dc.date.issued 2010 en
dc.identifier.issn 1537-6494 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20201
dc.subject adhesive layer en
dc.subject angularly inhomogeneous wedge en
dc.subject functionally graded materials en
dc.subject multi-material junction en
dc.subject plane elasticity problem en
dc.subject self-similarity property en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.classification Materials Science, Characterization & Testing en
dc.subject.classification Materials Science, Composites en
dc.subject.other adhesive layer en
dc.subject.other Adhesive layers en
dc.subject.other Analytic solution en
dc.subject.other Analytical approach en
dc.subject.other Analytical solutions en
dc.subject.other Concentrated force en
dc.subject.other Elastic wedge en
dc.subject.other Linear elasticity en
dc.subject.other Multi-material junctions en
dc.subject.other Plane strains en
dc.subject.other Plane stress condition en
dc.subject.other Self similarity properties en
dc.subject.other Self-similar en
dc.subject.other Shear modulus en
dc.subject.other Specific values en
dc.subject.other Stress and displacements en
dc.subject.other Elasticity en
dc.subject.other Stress analysis en
dc.subject.other Functionally graded materials en
dc.title An analytical approach for an adhesive layer in a graded elastic wedge en
heal.type journalArticle en
heal.identifier.primary 10.1080/15376494.2010.483321 en
heal.identifier.secondary http://dx.doi.org/10.1080/15376494.2010.483321 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper the influence of an adhesive layer in a graded elastic wedge consisted of two subwedges radially bonded, is investigated by means of linear elasticity. The adhesive layer in the analytical solution is simulated either by an interface or by an infinitesimal subwedge of very small wedge-angle. The graded character of the wedges is given either by a linearly varying or by an exponentially varying shear modulus. The inhomogeneous anisotropic self-similar bi-wedge and tri-wedge, loaded by a concentrated force at their apex, are studied analytically under plane strain or generalized plane stress conditions, using the self-similarity property. Based on the separation of loading in each subwedge and on the continuity of displacements at the interface, an analytic solution is deduced for the stress and displacements fields. Applications have been made in the case of a graded bi-wedge and a composite tri-wedge, in which for specific values of gradation, the stress and displacements fields are determined. Copyright © Taylor & Francis Group, LLC. en
heal.publisher TAYLOR & FRANCIS INC en
heal.journalName Mechanics of Advanced Materials and Structures en
dc.identifier.doi 10.1080/15376494.2010.483321 en
dc.identifier.isi ISI:000279890500002 en
dc.identifier.volume 17 en
dc.identifier.issue 6 en
dc.identifier.spage 393 en
dc.identifier.epage 405 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record