dc.contributor.author |
Glykas, A |
en |
dc.contributor.author |
Papaioannou, G |
en |
dc.contributor.author |
Perissakis, S |
en |
dc.date.accessioned |
2014-03-01T01:32:46Z |
|
dc.date.available |
2014-03-01T01:32:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0029-8018 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20221 |
|
dc.subject |
Bulk carriers |
en |
dc.subject |
Green energy |
en |
dc.subject |
Photovoltaic |
en |
dc.subject |
Ship |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Ocean |
en |
dc.subject.classification |
Oceanography |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Bulk carrier |
en |
dc.subject.other |
Carbon dioxide emissions |
en |
dc.subject.other |
Energy productions |
en |
dc.subject.other |
Fuel cost |
en |
dc.subject.other |
Fuel prices |
en |
dc.subject.other |
Green energy |
en |
dc.subject.other |
Hybrid power |
en |
dc.subject.other |
Marine vessels |
en |
dc.subject.other |
Parametric analysis |
en |
dc.subject.other |
Payback periods |
en |
dc.subject.other |
Peak output power |
en |
dc.subject.other |
Photovoltaic systems |
en |
dc.subject.other |
Renewable energy source |
en |
dc.subject.other |
Solar installation |
en |
dc.subject.other |
Solar panels |
en |
dc.subject.other |
Storage media |
en |
dc.subject.other |
Alternative fuels |
en |
dc.subject.other |
Carbon dioxide |
en |
dc.subject.other |
Cost benefit analysis |
en |
dc.subject.other |
Cost reduction |
en |
dc.subject.other |
Energy policy |
en |
dc.subject.other |
Fuel oils |
en |
dc.subject.other |
Global warming |
en |
dc.subject.other |
Hydrogen storage |
en |
dc.subject.other |
Installation |
en |
dc.subject.other |
Ships |
en |
dc.subject.other |
Solar concentrators |
en |
dc.subject.other |
Solar energy |
en |
dc.subject.other |
Solar radiation |
en |
dc.subject.other |
Sun |
en |
dc.subject.other |
Investments |
en |
dc.subject.other |
bulk carrier |
en |
dc.subject.other |
carbon dioxide |
en |
dc.subject.other |
cost-benefit analysis |
en |
dc.subject.other |
energy resource |
en |
dc.subject.other |
installation |
en |
dc.subject.other |
photovoltaic system |
en |
dc.subject.other |
renewable resource |
en |
dc.subject.other |
solar radiation |
en |
dc.title |
Application and cost-benefit analysis of solar hybrid power installation on merchant marine vessels |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.oceaneng.2010.01.019 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.oceaneng.2010.01.019 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Photovoltaic systems are renewable energy sources with various applications and their implementations in energy production and saving are verified. Installing those systems onto merchant marine vessels could prove to be an efficient way of minimizing fuel costs and simultaneously protecting the environment by reducing significant carbon dioxide emissions. This paper examines the feasibility of installing solar panels onto vessels and also calculated the payback period from the adopted investment with respect to fuel oil savings. Thus, the two important parameters incorporated in the parametric analysis are the solar radiation density and the fuel cost. In order to calculate the energy production of the solar installation systems, the globe is divided in six different zones, according to solar radiation density (Stackhouse and Whitlock, 2008). For one square meter of the considered solar panels the peak output power is taken equal to 130W (Kagaraki, 2001). The payback period of the investment depends greatly on the fuel prices. For a reasonable fuel price annual increase at about 10-15% the estimated payback period varies from 16 to 27 years. The more the fuel oil increases, the methodology reveals that the payback period converges to a minimum of 10 years. When using any storage media such as hydrogen, the methodology shows that the payback period increases and this depends on the proportion of the energy stored and from the storage media itself. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Ocean Engineering |
en |
dc.identifier.doi |
10.1016/j.oceaneng.2010.01.019 |
en |
dc.identifier.isi |
ISI:000278283600006 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
592 |
en |
dc.identifier.epage |
602 |
en |