dc.contributor.author |
Tzika, F |
en |
dc.contributor.author |
Kontogeorgakos, D |
en |
dc.contributor.author |
Vasilopoulou, T |
en |
dc.contributor.author |
Stamatelatos, IE |
en |
dc.date.accessioned |
2014-03-01T01:32:48Z |
|
dc.date.available |
2014-03-01T01:32:48Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0969-8043 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20227 |
|
dc.subject |
Efficiency |
en |
dc.subject |
Gamma-ray spectrometry |
en |
dc.subject |
Monte Carlo simulation |
en |
dc.subject.classification |
Chemistry, Inorganic & Nuclear |
en |
dc.subject.classification |
Nuclear Science & Technology |
en |
dc.subject.classification |
Radiology, Nuclear Medicine & Medical Imaging |
en |
dc.subject.other |
Crystal region |
en |
dc.subject.other |
Crystal volume |
en |
dc.subject.other |
Detector response |
en |
dc.subject.other |
Efficiency calibration |
en |
dc.subject.other |
Experimental measurements |
en |
dc.subject.other |
Full energy peak |
en |
dc.subject.other |
Gamma ray spectrometry |
en |
dc.subject.other |
Gamma spectrometers |
en |
dc.subject.other |
High purity germanium detectors |
en |
dc.subject.other |
In-situ |
en |
dc.subject.other |
In-situ gamma ray spectrometry |
en |
dc.subject.other |
Monte Carlo Simulation |
en |
dc.subject.other |
Photon energy range |
en |
dc.subject.other |
Calibration |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Descaling |
en |
dc.subject.other |
Detectors |
en |
dc.subject.other |
Gamma ray spectrometers |
en |
dc.subject.other |
Germanium |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Spectrometry |
en |
dc.subject.other |
Spectroscopy |
en |
dc.subject.other |
Stars |
en |
dc.subject.other |
Gamma rays |
en |
dc.subject.other |
germanium |
en |
dc.subject.other |
article |
en |
dc.subject.other |
calculation |
en |
dc.subject.other |
calibration |
en |
dc.subject.other |
collimator |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
gamma spectrometry |
en |
dc.subject.other |
high purity germanium detector |
en |
dc.subject.other |
intermethod comparison |
en |
dc.subject.other |
Monte Carlo method |
en |
dc.subject.other |
nuclear energy |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
process model |
en |
dc.subject.other |
radiation detector |
en |
dc.subject.other |
radiation measurement |
en |
dc.title |
Application of the Monte Carlo method for the calibration of an in situ gamma spectrometer |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.apradiso.2009.11.023 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.apradiso.2009.11.023 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A MCNP model was developed for the efficiency calibration of an in situ gamma ray spectrometry system based on a high purity germanium (HPGe) detector The detector active crystal volume was adjusted semi-empirically against experimental measurements Calculated full energy peak efficiency curves, over the photon energy range between 50 keV and 5 MeV, are presented for surface and slab source configurations The effect of different collimator apertures and the contribution of different HPGe crystal regions in the detector response are also shown. (C) 2009 Elsevier Ltd. All rights reserved |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Applied Radiation and Isotopes |
en |
dc.identifier.doi |
10.1016/j.apradiso.2009.11.023 |
en |
dc.identifier.isi |
ISI:000279123900053 |
en |
dc.identifier.volume |
68 |
en |
dc.identifier.issue |
7-8 |
en |
dc.identifier.spage |
1441 |
en |
dc.identifier.epage |
1444 |
en |