HEAL DSpace

Approximations of choice probabilities in mixed logit models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kalouptsidis, N en
dc.contributor.author Psaraki, V en
dc.date.accessioned 2014-03-01T01:32:49Z
dc.date.available 2014-03-01T01:32:49Z
dc.date.issued 2010 en
dc.identifier.issn 0377-2217 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20228
dc.subject Approximate choice probabilities en
dc.subject Discrete choice en
dc.subject Mixed logit en
dc.subject Random utility maximization models en
dc.subject.classification Management en
dc.subject.classification Operations Research & Management Science en
dc.subject.other Approximate choice probabilities en
dc.subject.other Approximate computation en
dc.subject.other Apriori en
dc.subject.other Computational costs en
dc.subject.other Discrete choice en
dc.subject.other High order en
dc.subject.other Log-likelihood maximization en
dc.subject.other Logit functions en
dc.subject.other Mixed logit en
dc.subject.other Mixed logit models en
dc.subject.other Random coefficients en
dc.subject.other Random utility maximization models en
dc.subject.other Simulation data en
dc.subject.other Simulation-based method en
dc.subject.other Taylor expansions en
dc.subject.other Optimization en
dc.subject.other Parameter estimation en
dc.subject.other Probability en
dc.subject.other Simulators en
dc.title Approximations of choice probabilities in mixed logit models en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ejor.2009.01.017 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ejor.2009.01.017 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract This paper is concerned with the approximate computation of choice probabilities in mixed logit models. The relevant approximations are based on the Taylor expansion of the classical logit function and on the high order moments of the random coefficients. The approximate choice probabilities and their derivatives are used in conjunction with log likelihood maximization for parameter estimation. The resulting method avoids the assumption of an apriori distribution for the random tastes. Moreover experiments with simulation data show that it compares well with the simulation based methods in terms of computational cost. (C) 2009 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName European Journal of Operational Research en
dc.identifier.doi 10.1016/j.ejor.2009.01.017 en
dc.identifier.isi ISI:000270647100019 en
dc.identifier.volume 200 en
dc.identifier.issue 2 en
dc.identifier.spage 529 en
dc.identifier.epage 535 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής