dc.contributor.author |
Kalouptsidis, N |
en |
dc.contributor.author |
Psaraki, V |
en |
dc.date.accessioned |
2014-03-01T01:32:49Z |
|
dc.date.available |
2014-03-01T01:32:49Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0377-2217 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20228 |
|
dc.subject |
Approximate choice probabilities |
en |
dc.subject |
Discrete choice |
en |
dc.subject |
Mixed logit |
en |
dc.subject |
Random utility maximization models |
en |
dc.subject.classification |
Management |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Approximate choice probabilities |
en |
dc.subject.other |
Approximate computation |
en |
dc.subject.other |
Apriori |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Discrete choice |
en |
dc.subject.other |
High order |
en |
dc.subject.other |
Log-likelihood maximization |
en |
dc.subject.other |
Logit functions |
en |
dc.subject.other |
Mixed logit |
en |
dc.subject.other |
Mixed logit models |
en |
dc.subject.other |
Random coefficients |
en |
dc.subject.other |
Random utility maximization models |
en |
dc.subject.other |
Simulation data |
en |
dc.subject.other |
Simulation-based method |
en |
dc.subject.other |
Taylor expansions |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Simulators |
en |
dc.title |
Approximations of choice probabilities in mixed logit models |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ejor.2009.01.017 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ejor.2009.01.017 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This paper is concerned with the approximate computation of choice probabilities in mixed logit models. The relevant approximations are based on the Taylor expansion of the classical logit function and on the high order moments of the random coefficients. The approximate choice probabilities and their derivatives are used in conjunction with log likelihood maximization for parameter estimation. The resulting method avoids the assumption of an apriori distribution for the random tastes. Moreover experiments with simulation data show that it compares well with the simulation based methods in terms of computational cost. (C) 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
European Journal of Operational Research |
en |
dc.identifier.doi |
10.1016/j.ejor.2009.01.017 |
en |
dc.identifier.isi |
ISI:000270647100019 |
en |
dc.identifier.volume |
200 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
529 |
en |
dc.identifier.epage |
535 |
en |