dc.contributor.author |
Goussetis, G |
en |
dc.contributor.author |
Gomez-Tornero, JL |
en |
dc.contributor.author |
Feresidis, AP |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.date.accessioned |
2014-03-01T01:32:50Z |
|
dc.date.available |
2014-03-01T01:32:50Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0018-926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20230 |
|
dc.subject |
Artificial surfaces |
en |
dc.subject |
dispersion compensation |
en |
dc.subject |
frequency selective surfaces |
en |
dc.subject |
pulse transmission |
en |
dc.subject |
surface impedance |
en |
dc.subject |
waveguide dispersion |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Artificial surfaces |
en |
dc.subject.other |
frequency selective surfaces |
en |
dc.subject.other |
Pulse transmission |
en |
dc.subject.other |
surface impedance |
en |
dc.subject.other |
waveguide dispersion |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dispersion compensation |
en |
dc.subject.other |
Electromagnetic dispersion |
en |
dc.subject.other |
Waveguides |
en |
dc.subject.other |
Dispersions |
en |
dc.title |
Artificial impedance surfaces for reduced dispersion in antenna feeding systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TAP.2010.2071358 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAP.2010.2071358 |
en |
heal.identifier.secondary |
5559375 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
An impedance surface is presented that reduces the dispersion experienced upon propagation of broadband pulses within rectangular waveguides. The surface impedance is selected so that, within a frequency range, the transverse resonance condition is satisfied for longitudinal wavenumber that varies linearly with frequency. A synthesis procedure for practical surface topologies consisting of periodic dipole arrays is described. An example involving a finite structure is employed to illustrate the reduced dispersion. Numerical simulation results obtained from in-house mode-matching method as well as HFSS are presented. A prototype is fabricated and tested experimentally validating the theoretical predictions. © 2010 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/TAP.2010.2071358 |
en |
dc.identifier.isi |
ISI:000283940100024 |
en |
dc.identifier.volume |
58 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
3629 |
en |
dc.identifier.epage |
3636 |
en |