HEAL DSpace

Assessing performance in Greek bauxite mining by means of frontier estimation methodologies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsolas, IE en
dc.date.accessioned 2014-03-01T01:32:52Z
dc.date.available 2014-03-01T01:32:52Z
dc.date.issued 2010 en
dc.identifier.issn 1471-678X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20232
dc.subject Bauxite mining en
dc.subject Bootstrapping en
dc.subject Data envelopment analysis en
dc.subject Greece en
dc.subject Stochastic frontier analysis en
dc.subject.other Bauxite mining en
dc.subject.other Data sets en
dc.subject.other Frontier estimation en
dc.subject.other Independence assumption en
dc.subject.other Mining industry en
dc.subject.other Performance evaluation en
dc.subject.other Performance measurements en
dc.subject.other Point estimate en
dc.subject.other Productivity measure en
dc.subject.other Return to scale en
dc.subject.other Stochastic frontier analysis en
dc.subject.other Bauxite deposits en
dc.subject.other Data handling en
dc.subject.other Linear programming en
dc.subject.other Stochastic systems en
dc.subject.other Time series en
dc.subject.other Data envelopment analysis en
dc.title Assessing performance in Greek bauxite mining by means of frontier estimation methodologies en
heal.type journalArticle en
heal.identifier.primary 10.1093/imaman/dpp018 en
heal.identifier.secondary http://dx.doi.org/10.1093/imaman/dpp018 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract This paper employs for the first time data envelopment analysis (DEA) and stochastic frontier analysis (SFA) as two performance measurement competing approaches to assess efficiency in the Greek mining industry. These two frontier estimation methodologies overcome the limitations of the partial productivity measures by explicitly considering two inputs and one output in the measurement of efficiency for the period 1970-1996. The paper is also innovative in utilizing a bootstrapping approach in DEA to aggregated industry (time series) data as an alternative to the more common DEA point estimates. In particular, the bootstrapping approach used relies on the homogeneity assumption that the distribution of the efficiency scores is independently distributed over the sample; the results from DEA and SFA are more comparable under this assumption as it corresponds to the independence assumption regarding the distribution of the inefficiency term in SFA. The two different approaches to performance evaluation, as used here, do not provide confirmation of each other's findings since they are based on different principles and treat the data in different ways. Although the joint use made here of DEA and SFA provides results that are consistent with points of view that have regarded these two approaches as mutually exclusive alternatives, this paper demonstrates that from a policy perspective DEA and SFA can be utilized in tandem on a common data set to assess the efficiency and investigate the return to scale patterns at the sectoral level. © 2009 The authors. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. en
heal.publisher OXFORD UNIV PRESS en
heal.journalName IMA Journal Management Mathematics en
dc.identifier.doi 10.1093/imaman/dpp018 en
dc.identifier.isi ISI:000279776700003 en
dc.identifier.volume 21 en
dc.identifier.issue 3 en
dc.identifier.spage 253 en
dc.identifier.epage 265 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής