HEAL DSpace

Automatic model-based tracing algorithm for vessel segmentation and diameter estimation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Delibasis, KK en
dc.contributor.author Kechriniotis, AI en
dc.contributor.author Tsonos, C en
dc.contributor.author Assimakis, N en
dc.date.accessioned 2014-03-01T01:32:55Z
dc.date.available 2014-03-01T01:32:55Z
dc.date.issued 2010 en
dc.identifier.issn 0169-2607 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20238
dc.subject Automatic tracking en
dc.subject Vessel diameter measurement en
dc.subject Vessel parametric model en
dc.subject Vessel segmentation en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Medical Informatics en
dc.subject.other Angiographic images en
dc.subject.other Automatic algorithms en
dc.subject.other Automatic models en
dc.subject.other Automatic tracking en
dc.subject.other Central axis en
dc.subject.other Complex shapes en
dc.subject.other Diameter estimation en
dc.subject.other Geometric models en
dc.subject.other Parametric models en
dc.subject.other Positioning error en
dc.subject.other Root Mean Square en
dc.subject.other Segmentation results en
dc.subject.other Sub pixels en
dc.subject.other Tracing algorithm en
dc.subject.other User intervention en
dc.subject.other Vessel detection en
dc.subject.other Vessel diameter en
dc.subject.other Vessel diameter measurement en
dc.subject.other Vessel model en
dc.subject.other Vessel parametric model en
dc.subject.other Vessel segmentation en
dc.subject.other Algorithms en
dc.subject.other Image segmentation en
dc.subject.other Models en
dc.subject.other Servomechanisms en
dc.subject.other Trees (mathematics) en
dc.subject.other Volume measurement en
dc.subject.other Image matching en
dc.subject.other accuracy en
dc.subject.other algorithm en
dc.subject.other angiography en
dc.subject.other article en
dc.subject.other automation en
dc.subject.other data base en
dc.subject.other geometry en
dc.subject.other image analysis en
dc.subject.other mathematical model en
dc.subject.other Algorithms en
dc.subject.other Automation en
dc.subject.other Humans en
dc.subject.other Models, Theoretical en
dc.subject.other Retinal Vessels en
dc.title Automatic model-based tracing algorithm for vessel segmentation and diameter estimation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cmpb.2010.03.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cmpb.2010.03.004 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract An automatic algorithm capable of segmenting the whole vessel tree and calculate vessel diameter and orientation in a digital ophthalmologic image is presented in this work. The algorithm is based on a parametric model of a vessel that can assume arbitrarily complex shape and a simple measure of match that quantifies how well the vessel model matches a given angiographic image. An automatic vessel tracing algorithm is described that exploits the geometric model and actively seeks vessel bifurcation, without user intervention. The proposed algorithm uses the geometric vessel model to determine the vessel diameter at each detected central axis pixel. For this reason, the algorithm is fine tuned using a subset of ophthalmologic images of the publically available DRIVE database, by maximizing vessel segmentation accuracy. The proposed algorithm is then applied to the remaining ophthalmological images of the DRIVE database. The segmentation results of the proposed algorithm compare favorably in terms of accuracy with six other well established vessel detection techniques, outperforming three of them in the majority of the available ophthalmologic images. The proposed algorithm achieves subpixel root mean square central axis positioning error that outperforms the non-expert based vessel segmentation, whereas the accuracy of vessel diameter estimation is comparable to that of the non-expert based vessel segmentation. (C) 2010 Elsevier Ireland Ltd. All rights reserved. en
heal.publisher ELSEVIER IRELAND LTD en
heal.journalName Computer Methods and Programs in Biomedicine en
dc.identifier.doi 10.1016/j.cmpb.2010.03.004 en
dc.identifier.isi ISI:000283040000002 en
dc.identifier.volume 100 en
dc.identifier.issue 2 en
dc.identifier.spage 108 en
dc.identifier.epage 122 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής