dc.contributor.author |
Karavalakis, G |
en |
dc.contributor.author |
Anastopoulos, G |
en |
dc.contributor.author |
Karonis, D |
en |
dc.contributor.author |
Stournas, S |
en |
dc.date.accessioned |
2014-03-01T01:32:57Z |
|
dc.date.available |
2014-03-01T01:32:57Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0378-3820 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20243 |
|
dc.subject |
Benzyltrimethyl ammonium hydroxide |
en |
dc.subject |
Biodiesel |
en |
dc.subject |
Organic amines |
en |
dc.subject |
Tetramethyl ammonium hydroxide |
en |
dc.subject |
Transesterification |
en |
dc.subject.classification |
Chemistry, Applied |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
Ammonium hydroxide |
en |
dc.subject.other |
Base catalyst |
en |
dc.subject.other |
Biodiesel production |
en |
dc.subject.other |
Catalyst concentration |
en |
dc.subject.other |
Conversion rates |
en |
dc.subject.other |
Fatty acid methyl ester |
en |
dc.subject.other |
Frying oil |
en |
dc.subject.other |
Liquid catalyst |
en |
dc.subject.other |
Methyl esters |
en |
dc.subject.other |
Molar ratio |
en |
dc.subject.other |
Optimum conditions |
en |
dc.subject.other |
Organic amine |
en |
dc.subject.other |
Reaction time |
en |
dc.subject.other |
Reaction variables |
en |
dc.subject.other |
Sodium hydroxides |
en |
dc.subject.other |
Tetramethyl |
en |
dc.subject.other |
Tetramethyl ammonium hydroxide |
en |
dc.subject.other |
Transesterification reaction |
en |
dc.subject.other |
Waste oil |
en |
dc.subject.other |
Alternative fuels |
en |
dc.subject.other |
Amides |
en |
dc.subject.other |
Amines |
en |
dc.subject.other |
Biodiesel |
en |
dc.subject.other |
Catalysts |
en |
dc.subject.other |
Cottonseed oil |
en |
dc.subject.other |
Esterification |
en |
dc.subject.other |
Esters |
en |
dc.subject.other |
Fatty acids |
en |
dc.subject.other |
Methanol |
en |
dc.subject.other |
Sodium |
en |
dc.subject.other |
Transesterification |
en |
dc.subject.other |
Ammonium compounds |
en |
dc.title |
Biodiesel production using tetramethyl- and benzyltrimethyl ammonium hydroxides as strong base catalysts |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.fuproc.2010.06.006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.fuproc.2010.06.006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In recent years, the acceptance of fatty acid methyl esters (biodiesel) as an alternative fuel has rapidly grown in EU. The most common method for biodiesel production is based on triglyceride transesterification to methyl esters with dissolved sodium hydroxide in methanol as catalyst. In this study, cottonseed oil and used frying oil were subjected to the transesterification reaction with tetramethyl ammonium hydroxide and benzyltrimethyl ammonium hydroxide as strong base catalysts. This work investigates the optimum conditions for biodiesel production using amine-based liquid catalysts. Biodiesel ester content was strongly related with the type of feedstock and the reaction variables, such as those of the catalyst concentration, methanol to oil molar ratio, and reaction time. The overall results suggested that the transesterification of cottonseed oil achieved high conversion rates with both catalysts, while the use of waste oil resulted in lower yields of methyl esters due to the possible formation of amides. (c) 2010 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Fuel Processing Technology |
en |
dc.identifier.doi |
10.1016/j.fuproc.2010.06.006 |
en |
dc.identifier.isi |
ISI:000282550900030 |
en |
dc.identifier.volume |
91 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1585 |
en |
dc.identifier.epage |
1590 |
en |