dc.contributor.author |
Michaltsos, GT |
en |
dc.date.accessioned |
2014-03-01T01:32:57Z |
|
dc.date.available |
2014-03-01T01:32:57Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1077-5463 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20249 |
|
dc.subject |
Bridges dynamic |
en |
dc.subject |
Deck irregularities |
en |
dc.subject |
Moving loads |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Continuous approach |
en |
dc.subject.other |
Critical velocities |
en |
dc.subject.other |
Landing points |
en |
dc.subject.other |
Moving load |
en |
dc.subject.other |
Moving loads |
en |
dc.subject.other |
Theoretical formulation |
en |
dc.subject.other |
Two degrees of freedom |
en |
dc.subject.other |
Landing |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Roads and streets |
en |
dc.subject.other |
Vehicles |
en |
dc.subject.other |
Highway bridges |
en |
dc.title |
Bouncing of a vehicle on an irregularity: A mathematical model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1177/1077546309104878 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1177/1077546309104878 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This paper leads with the phenomenon of the bouncing of a vehicle due to an irregularity being on a road or on a bridge deck. Attention is focused on the determination of the critical velocity for which the vehicle loses touch with the roads or the bridge-decks surface following a missiles orbit and then striking the road or the bridge during landing. If the vehicle moves with a velocity greater than the critical one, we determine the corresponding time (and thus the point of the bridge) at which touch is lost. Afterwards, we determine also the landing point of the vehicle. Solving firstly the above problem for a vehicle moving on a road, it is easy next to proceed to the solution of the same problem for a vehicle moving on a bridge. The theoretical formulation is based on a continuous approach in addition to the use of a two degrees of freedom model associated with the mass of the moving load. © 2010 SAGE Publications Los Angeles, London, New Delhi, Singapore. |
en |
heal.publisher |
SAGE PUBLICATIONS LTD |
en |
heal.journalName |
JVC/Journal of Vibration and Control |
en |
dc.identifier.doi |
10.1177/1077546309104878 |
en |
dc.identifier.isi |
ISI:000274189000002 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
181 |
en |
dc.identifier.epage |
206 |
en |