dc.contributor.author |
Tzortzatou, K |
en |
dc.contributor.author |
Grigoropoulou, E |
en |
dc.date.accessioned |
2014-03-01T01:32:59Z |
|
dc.date.available |
2014-03-01T01:32:59Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1093-4529 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20261 |
|
dc.subject |
Copper catalyst |
en |
dc.subject |
Heterogeneous catalysis |
en |
dc.subject |
Industrial solvent |
en |
dc.subject |
Platinum catalyst |
en |
dc.subject |
VOC |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Active components |
en |
dc.subject.other |
Ambient pressures |
en |
dc.subject.other |
Catalyst loadings |
en |
dc.subject.other |
Catalytic activity |
en |
dc.subject.other |
Copper catalyst |
en |
dc.subject.other |
Crystallinities |
en |
dc.subject.other |
Heterogeneous catalysis |
en |
dc.subject.other |
Industrial solvents |
en |
dc.subject.other |
Nitrogen adsorption |
en |
dc.subject.other |
Organic solvent vapors |
en |
dc.subject.other |
Platinum catalysts |
en |
dc.subject.other |
Power-law kinetics |
en |
dc.subject.other |
Pt catalysts |
en |
dc.subject.other |
Scanning electron microscopes |
en |
dc.subject.other |
Total oxidation |
en |
dc.subject.other |
X ray fluorescence analysis |
en |
dc.subject.other |
Catalysis |
en |
dc.subject.other |
Catalyst activity |
en |
dc.subject.other |
Copper |
en |
dc.subject.other |
Electrochemical sensors |
en |
dc.subject.other |
Gas adsorption |
en |
dc.subject.other |
Metallic compounds |
en |
dc.subject.other |
Organic solvents |
en |
dc.subject.other |
Paraffins |
en |
dc.subject.other |
Platinum |
en |
dc.subject.other |
Scanning electron microscopy |
en |
dc.subject.other |
Volatile organic compounds |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
X ray diffraction analysis |
en |
dc.subject.other |
Catalytic oxidation |
en |
dc.subject.other |
carbon |
en |
dc.subject.other |
copper oxide |
en |
dc.subject.other |
lead |
en |
dc.subject.other |
metal derivative |
en |
dc.subject.other |
naphthalene derivative |
en |
dc.subject.other |
nitrogen |
en |
dc.subject.other |
organic solvent |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
article |
en |
dc.subject.other |
catalysis |
en |
dc.subject.other |
catalyst |
en |
dc.subject.other |
crystal structure |
en |
dc.subject.other |
dispersion |
en |
dc.subject.other |
environmental temperature |
en |
dc.subject.other |
kinetics |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
pressure |
en |
dc.subject.other |
scanning electron microscopy |
en |
dc.subject.other |
vapor |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
X ray fluorescence |
en |
dc.subject.other |
Catalysis |
en |
dc.subject.other |
Fluorescence |
en |
dc.subject.other |
Kinetics |
en |
dc.subject.other |
Microscopy, Electron, Scanning |
en |
dc.subject.other |
Organic Chemicals |
en |
dc.subject.other |
Oxidation-Reduction |
en |
dc.subject.other |
Solvents |
en |
dc.subject.other |
X-Ray Diffraction |
en |
dc.title |
Catalytic oxidation of industrial organic solvent vapors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/10934521003595027 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/10934521003595027 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In the present study the catalytic oxidation of an industrial organic solvent consisting predominantly of C-9 to C-10 paraffins and napthtenics and derived from low aromatic white spirit on CuO and Pt catalysts was investigated at ambient pressure and temperatures between 330 and 770 K. Catalysts were prepared in the laboratory and compared to commercial ones. Characterization was based on x-ray diffraction (XRD) analysis, x-ray fluorescence (XRF) analysis, scanning electron microscope (SEM) analysis and nitrogen adsorption data. The commercial platinum catalyst was proved highly efficient in the oxidation of the commercial solvent, necessitating lower temperatures for total oxidation. Catalyst loading in active component is clearly not of primordial importance, since its dispersion and crystallinity as well as the presence of other metallic compounds influence also the catalytic activity. In the case of copper catalysts studied, the different support (alumina) characteristics also would contribute to the difference in catalytic activity. Finally, the power law kinetics may successfully be used in order to explain the catalytic oxidation data of the organic solvent, where its constituents are modeled as a single carbon-containing compound. Copyright Copy; Taylor & Francis Group, LLC. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering |
en |
dc.identifier.doi |
10.1080/10934521003595027 |
en |
dc.identifier.isi |
ISI:000275852100003 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
534 |
en |
dc.identifier.epage |
541 |
en |