dc.contributor.author |
Reppas, AI |
en |
dc.contributor.author |
Tsoumanis, AC |
en |
dc.contributor.author |
Siettos, CI |
en |
dc.date.accessioned |
2014-03-01T01:33:00Z |
|
dc.date.available |
2014-03-01T01:33:00Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0307-904X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20273 |
|
dc.subject |
Bifurcation analysis |
en |
dc.subject |
Control |
en |
dc.subject |
Epidemiology |
en |
dc.subject |
Individual-based models |
en |
dc.subject |
Multi-scale computations |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Amplitude oscillation |
en |
dc.subject.other |
Bifurcation analysis |
en |
dc.subject.other |
Bifurcation diagram |
en |
dc.subject.other |
Coarse-grained |
en |
dc.subject.other |
Computational framework |
en |
dc.subject.other |
Control policy |
en |
dc.subject.other |
Critical points |
en |
dc.subject.other |
Equation-Free |
en |
dc.subject.other |
Illustrative examples |
en |
dc.subject.other |
Individual-based |
en |
dc.subject.other |
Individual-based models |
en |
dc.subject.other |
Infection control |
en |
dc.subject.other |
Multi-scale computations |
en |
dc.subject.other |
Multiscales |
en |
dc.subject.other |
Network models |
en |
dc.subject.other |
Regular networks |
en |
dc.subject.other |
Stochastic epidemics |
en |
dc.subject.other |
Time-dependent solutions |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Disease control |
en |
dc.subject.other |
Equations of state |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
Simulators |
en |
dc.title |
Coarse-grained bifurcation analysis and detection of criticalities of an individual-based epidemiological network model with infection control |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.apm.2009.06.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.apm.2009.06.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We present and discuss how the so called Equation-free approach for multi-scale computations can be used to systematically study certain aspects of the dynamics of detailed individual-based epidemiological simulators. As our illustrative example, we choose a simple individual-based stochastic epidemic model evolving on a fixed random regular network (RRN). We show how control policies based on the isolation of the infected population can dramatically influence the dynamics of the disease resulting to big-amplitude oscillations. We also address the development of a computational framework that enables detailed epidemiological simulators to converge to their coarse-grained critical points, which mark the onset of the emergent time-dependent solutions as well as to trace branches of coarse-grained unstable equilibria. Using the individual-based simulator we construct the coarse-grained bifurcation diagrams illustrating the dependence of the solutions on the disease characteristics. (C) 2009 Elsevier Inc. All rights reserved |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematical Modelling |
en |
dc.identifier.doi |
10.1016/j.apm.2009.06.005 |
en |
dc.identifier.isi |
ISI:000272065400003 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
552 |
en |
dc.identifier.epage |
560 |
en |