dc.contributor.author |
Arkoulis, S |
en |
dc.contributor.author |
Spanos, D-E |
en |
dc.contributor.author |
Barbounakis, S |
en |
dc.contributor.author |
Zafeiropoulos, A |
en |
dc.contributor.author |
Mitrou, N |
en |
dc.date.accessioned |
2014-03-01T01:33:00Z |
|
dc.date.available |
2014-03-01T01:33:00Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0957-0233 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20275 |
|
dc.subject |
Bluetooth |
en |
dc.subject |
Coexistence problem |
en |
dc.subject |
Emergency |
en |
dc.subject |
Spectrum access |
en |
dc.subject |
WiFi |
en |
dc.subject |
Wireless sensor networks |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Instruments & Instrumentation |
en |
dc.subject.other |
Changing environment |
en |
dc.subject.other |
Close proximity |
en |
dc.subject.other |
Coexistence problem |
en |
dc.subject.other |
Cognitive radio |
en |
dc.subject.other |
Efficient method |
en |
dc.subject.other |
Emergency |
en |
dc.subject.other |
Emergency response |
en |
dc.subject.other |
Emergency situation |
en |
dc.subject.other |
Energy consumption |
en |
dc.subject.other |
Experimental measurements |
en |
dc.subject.other |
Flexible channel allocation |
en |
dc.subject.other |
IEEE 802.11b/g |
en |
dc.subject.other |
Network node |
en |
dc.subject.other |
Operational frequency |
en |
dc.subject.other |
Real environments |
en |
dc.subject.other |
Research efforts |
en |
dc.subject.other |
Spectrum access |
en |
dc.subject.other |
Wireless sensor |
en |
dc.subject.other |
Bluetooth |
en |
dc.subject.other |
Energy utilization |
en |
dc.subject.other |
Frequency bands |
en |
dc.subject.other |
Interference suppression |
en |
dc.subject.other |
Sensor networks |
en |
dc.subject.other |
Spectroscopy |
en |
dc.subject.other |
Standards |
en |
dc.subject.other |
Wi-Fi |
en |
dc.subject.other |
Wireless sensor networks |
en |
dc.title |
Cognitive radio-aided wireless sensor networks for emergency response |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0957-0233/21/12/124002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0957-0233/21/12/124002 |
en |
heal.identifier.secondary |
124002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A lot of research effort has been put into wireless sensor networks (WSNs) and several methods have been proposed to minimize the energy consumption and maximize the network's lifetime. However, little work has been carried out regarding WSNs deployed for emergency situations. We argue that such WSNs should function under a flexible channel allocation scheme when needed and be able to operate and adapt in dynamic, ever-changing environments coexisting with other interfering networks (IEEE 802.11b/g, 802.15.4, 802.15.1). In this paper, a simple and efficient method for the detection of a single operational frequency channel that guarantees satisfactory communication among all network nodes is proposed. Experimental measurements carried out in a real environment reveal the coexistence problem among networks in close proximity that operate in the same frequency band and prove the validity and efficiency of our approach. © 2010 IOP Publishing Ltd. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Measurement Science and Technology |
en |
dc.identifier.doi |
10.1088/0957-0233/21/12/124002 |
en |
dc.identifier.isi |
ISI:000284261900004 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
12 |
en |