HEAL DSpace

Comparative design study of a diesel exhaust gas heat exchanger for truck applications with conventional and state of the art heat transfer enhancements

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mavridou, S en
dc.contributor.author Mavropoulos, GC en
dc.contributor.author Bouris, D en
dc.contributor.author Hountalas, DT en
dc.contributor.author Bergeles, G en
dc.date.accessioned 2014-03-01T01:33:01Z
dc.date.available 2014-03-01T01:33:01Z
dc.date.issued 2010 en
dc.identifier.issn 1359-4311 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20280
dc.subject Heat exchanger en
dc.subject Exhaust gas en
dc.subject Diesel engine en
dc.subject Truck en
dc.subject Heat transfer en
dc.subject.classification Thermodynamics en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other METAL FOAMS en
dc.subject.other PERFORMANCE en
dc.subject.other EMISSIONS en
dc.subject.other RATES en
dc.subject.other FLOW en
dc.title Comparative design study of a diesel exhaust gas heat exchanger for truck applications with conventional and state of the art heat transfer enhancements en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.applthermaleng.2010.01.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.applthermaleng.2010.01.003 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The exhaust gas of heavy duty diesel engines can provide an important heat source that may be used in a number of ways to provide additional power and improve overall engine efficiency. The sizing of a heat exchanger that can manage the heat load and still be of reasonable size and weight without excessive pressure drop is of significant importance especially for truck applications. This is the subject of the present work. To approach the problem, a total of five different configurations are investigated and a comparison of conventional and state of the art heat transfer enhancement technologies is included. Two groups of configurations are examined: (a) a classical shell and tube heat exchanger using staggered cross-flow tube bundles with smooth circular tubes, finned tubes and tubes with dimpled surfaces and (b) a cross-flow plate heat exchanger, initially with finned surfaces on the exhaust gas side and then with 10 ppi and 40 ppi metal foam material substituting for the fins. Calculations were performed, using established heat exchanger design methodologies and recently published data from the literature to size the aforementioned configurations. The solutions provided reduce the overall heat exchanger size, with the plate and fin type consisting of plain fins presenting the minimum pressure drop (up to 98% reduction compared to the other configurations), and the 40 ppi metal foam being the most compact in terms of size and weight. Durability of the solutions is another issue which will be examined in a future investigation. However, coupling of the exhaust heat exchanger after a particulate trap appears to be the most promising solution to avoid clogging from soot accumulation. (C) 2010 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName APPLIED THERMAL ENGINEERING en
dc.identifier.doi 10.1016/j.applthermaleng.2010.01.003 en
dc.identifier.isi ISI:000276275000020 en
dc.identifier.volume 30 en
dc.identifier.issue 8-9 en
dc.identifier.spage 935 en
dc.identifier.epage 947 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής