HEAL DSpace

Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Polychronaki, GE en
dc.contributor.author Ktonas, PY en
dc.contributor.author Gatzonis, S en
dc.contributor.author Siatouni, A en
dc.contributor.author Asvestas, PA en
dc.contributor.author Tsekou, H en
dc.contributor.author Sakas, D en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T01:33:02Z
dc.date.available 2014-03-01T01:33:02Z
dc.date.issued 2010 en
dc.identifier.issn 1741-2560 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20283
dc.subject Epileptic Seizure en
dc.subject Estimation Algorithm en
dc.subject Fractal Dimension en
dc.subject Onset Detection en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Neurosciences en
dc.subject.other Epileptic seizures en
dc.subject.other Estimation algorithm en
dc.subject.other False positive rates en
dc.subject.other Fractal dimension estimation en
dc.subject.other Higuchi's algorithms en
dc.subject.other K-nearest neighbour (k-NN) en
dc.subject.other k-NN algorithm en
dc.subject.other Natural measure en
dc.subject.other Seizure detection en
dc.subject.other Seizure onset en
dc.subject.other Synthetic signals en
dc.subject.other Testing data en
dc.subject.other Training data sets en
dc.subject.other Wave forms en
dc.subject.other Drops en
dc.subject.other Electroencephalography en
dc.subject.other Estimation en
dc.subject.other Finite difference method en
dc.subject.other Fractal dimension en
dc.subject.other Partial discharges en
dc.subject.other Statistical tests en
dc.subject.other Algorithms en
dc.subject.other adult en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other clinical article en
dc.subject.other comparative study en
dc.subject.other diagnostic accuracy en
dc.subject.other electroencephalogram en
dc.subject.other female en
dc.subject.other fractal dimension en
dc.subject.other human en
dc.subject.other male en
dc.subject.other mathematical computing en
dc.subject.other priority journal en
dc.subject.other scalp en
dc.subject.other seizure en
dc.subject.other spectral sensitivity en
dc.subject.other waveform en
dc.title Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection en
heal.type journalArticle en
heal.identifier.primary 10.1088/1741-2560/7/4/046007 en
heal.identifier.secondary http://dx.doi.org/10.1088/1741-2560/7/4/046007 en
heal.identifier.secondary 46007 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Fractal dimension (FD) is a natural measure of the irregularity of a curve. In this study the performances of three waveform FD estimation algorithms (i.e. Katz's, Higuchi's and the k-nearest neighbour (k-NN) algorithm) were compared in terms of their ability to detect the onset of epileptic seizures in scalp electroencephalogram (EEG). The selection of parameters involved in FD estimation, evaluation of the accuracy of the different algorithms and assessment of their robustness in the presence of noise were performed based on synthetic signals of known FD. When applied to scalp EEG data, Katz's and Higuchi's algorithms were found to be incapable of producing consistent changes of a single type (either a drop or an increase) during seizures. On the other hand, the k-NN algorithm produced a drop, starting close to the seizure onset, in most seizures of all patients. The k-NN algorithm outperformed both Katz's and Higuchi's algorithms in terms of robustness in the presence of noise and seizure onset detection ability. The seizure detection methodology, based on the k-NN algorithm, yielded in the training data set a sensitivity of 100% with 10.10 s mean detection delay and a false positive rate of 0.27 h-1, while the corresponding values in the testing data set were 100%, 8.82 s and 0.42 h-1, respectively. The above detection results compare favourably to those of other seizure onset detection methodologies applied to scalp EEG in the literature. The methodology described, based on the k-NN algorithm, appears to be promising for the detection of the onset of epileptic seizures based on scalp EEG. © 2010 IOP Publishing Ltd. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Journal of Neural Engineering en
dc.identifier.doi 10.1088/1741-2560/7/4/046007 en
dc.identifier.isi ISI:000280038600011 en
dc.identifier.volume 7 en
dc.identifier.issue 4 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής