dc.contributor.author |
Polychronaki, GE |
en |
dc.contributor.author |
Ktonas, PY |
en |
dc.contributor.author |
Gatzonis, S |
en |
dc.contributor.author |
Siatouni, A |
en |
dc.contributor.author |
Asvestas, PA |
en |
dc.contributor.author |
Tsekou, H |
en |
dc.contributor.author |
Sakas, D |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T01:33:02Z |
|
dc.date.available |
2014-03-01T01:33:02Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1741-2560 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20283 |
|
dc.subject |
Epileptic Seizure |
en |
dc.subject |
Estimation Algorithm |
en |
dc.subject |
Fractal Dimension |
en |
dc.subject |
Onset Detection |
en |
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Neurosciences |
en |
dc.subject.other |
Epileptic seizures |
en |
dc.subject.other |
Estimation algorithm |
en |
dc.subject.other |
False positive rates |
en |
dc.subject.other |
Fractal dimension estimation |
en |
dc.subject.other |
Higuchi's algorithms |
en |
dc.subject.other |
K-nearest neighbour (k-NN) |
en |
dc.subject.other |
k-NN algorithm |
en |
dc.subject.other |
Natural measure |
en |
dc.subject.other |
Seizure detection |
en |
dc.subject.other |
Seizure onset |
en |
dc.subject.other |
Synthetic signals |
en |
dc.subject.other |
Testing data |
en |
dc.subject.other |
Training data sets |
en |
dc.subject.other |
Wave forms |
en |
dc.subject.other |
Drops |
en |
dc.subject.other |
Electroencephalography |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Finite difference method |
en |
dc.subject.other |
Fractal dimension |
en |
dc.subject.other |
Partial discharges |
en |
dc.subject.other |
Statistical tests |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
adult |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
clinical article |
en |
dc.subject.other |
comparative study |
en |
dc.subject.other |
diagnostic accuracy |
en |
dc.subject.other |
electroencephalogram |
en |
dc.subject.other |
female |
en |
dc.subject.other |
fractal dimension |
en |
dc.subject.other |
human |
en |
dc.subject.other |
male |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
scalp |
en |
dc.subject.other |
seizure |
en |
dc.subject.other |
spectral sensitivity |
en |
dc.subject.other |
waveform |
en |
dc.title |
Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/1741-2560/7/4/046007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/1741-2560/7/4/046007 |
en |
heal.identifier.secondary |
46007 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Fractal dimension (FD) is a natural measure of the irregularity of a curve. In this study the performances of three waveform FD estimation algorithms (i.e. Katz's, Higuchi's and the k-nearest neighbour (k-NN) algorithm) were compared in terms of their ability to detect the onset of epileptic seizures in scalp electroencephalogram (EEG). The selection of parameters involved in FD estimation, evaluation of the accuracy of the different algorithms and assessment of their robustness in the presence of noise were performed based on synthetic signals of known FD. When applied to scalp EEG data, Katz's and Higuchi's algorithms were found to be incapable of producing consistent changes of a single type (either a drop or an increase) during seizures. On the other hand, the k-NN algorithm produced a drop, starting close to the seizure onset, in most seizures of all patients. The k-NN algorithm outperformed both Katz's and Higuchi's algorithms in terms of robustness in the presence of noise and seizure onset detection ability. The seizure detection methodology, based on the k-NN algorithm, yielded in the training data set a sensitivity of 100% with 10.10 s mean detection delay and a false positive rate of 0.27 h-1, while the corresponding values in the testing data set were 100%, 8.82 s and 0.42 h-1, respectively. The above detection results compare favourably to those of other seizure onset detection methodologies applied to scalp EEG in the literature. The methodology described, based on the k-NN algorithm, appears to be promising for the detection of the onset of epileptic seizures based on scalp EEG. © 2010 IOP Publishing Ltd. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Journal of Neural Engineering |
en |
dc.identifier.doi |
10.1088/1741-2560/7/4/046007 |
en |
dc.identifier.isi |
ISI:000280038600011 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
4 |
en |