HEAL DSpace

Contrast enhancement of images using Partitioned Iterated Function Systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Economopoulos, TL en
dc.contributor.author Asvestas, PA en
dc.contributor.author Matsopoulos, GK en
dc.date.accessioned 2014-03-01T01:33:03Z
dc.date.available 2014-03-01T01:33:03Z
dc.date.issued 2010 en
dc.identifier.issn 0262-8856 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20297
dc.subject Contrast enhancement en
dc.subject Contrast Limited Adaptive Histogram Equalization en
dc.subject Iterated Function System en
dc.subject Linear and nonlinear unsharp masking en
dc.subject Local Range Modification en
dc.subject Self-similarity en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Optics en
dc.subject.other Contrast enhancement en
dc.subject.other Contrast Limited Adaptive Histogram Equalization en
dc.subject.other Iterated Function System en
dc.subject.other Linear and nonlinear unsharp masking en
dc.subject.other Local Range Modification en
dc.subject.other Self-similarity en
dc.subject.other Algorithms en
dc.subject.other Mathematical transformations en
dc.title Contrast enhancement of images using Partitioned Iterated Function Systems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.imavis.2009.04.011 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.imavis.2009.04.011 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract A new algorithm for the contrast enhancement of images, based on the theory of Partitioned Iterated Function System (PIFS), is presented. A PIFS consists of contractive transformations, such that the original image is the fixed point of the union of these transformations. Each transformation involves the contractive affine spatial transform of a square block, as well as the linear transform of the gray levels of its pixels. The transformation of the gray levels is determined by two parameters which adjust the brightness and the contrast of the transformed block. The PIFS is used in order to create a lowpass version of the original image. The contrast-enhanced image is obtained by adding the difference of the original image with its lowpass version, to the original image itself. The proposed algorithm uses a predefined constant value for the contrast parameter, whereas, the parameters of the affine spatial transform, as well as the parameter adjusting the brightness, are calculated using k-dimensional trees. The lowpass version of the original image is obtained applying the PIFS on the original image repeatedly while using a value for the contrast parameter that is lower than the predefined one. Quantitative and qualitative results stress the superior performance of the proposed contrast enhancement algorithm against four other widely used contrast enhancement methods; namely, linear and nonlinear unsharp masking, Contrast Limited Adaptive Histogram Equalization and Local Range Modification. (C) 2009 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Image and Vision Computing en
dc.identifier.doi 10.1016/j.imavis.2009.04.011 en
dc.identifier.isi ISI:000272895000006 en
dc.identifier.volume 28 en
dc.identifier.issue 1 en
dc.identifier.spage 45 en
dc.identifier.epage 54 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής