HEAL DSpace

Convexity of yield surface with directional distortional hardening rules

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Plesek, J en
dc.contributor.author Feigenbaum, HP en
dc.contributor.author Dafalias, YF en
dc.date.accessioned 2014-03-01T01:33:04Z
dc.date.available 2014-03-01T01:33:04Z
dc.date.issued 2010 en
dc.identifier.issn 0733-9399 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20303
dc.subject Anisotropy en
dc.subject Convexity en
dc.subject Elastoplasticity en
dc.subject Plasticity en
dc.subject Yield surface en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Convexity en
dc.subject.other Flow rules en
dc.subject.other Fourth-order en
dc.subject.other Hardening model en
dc.subject.other Hardening rules en
dc.subject.other Isotropic hardenings en
dc.subject.other Limit state en
dc.subject.other Material constant en
dc.subject.other Numerical example en
dc.subject.other Sufficient conditions en
dc.subject.other Yield surface en
dc.subject.other Anisotropy en
dc.subject.other Elasticity en
dc.subject.other Elastoplasticity en
dc.subject.other Hardening en
dc.subject.other Plasticity en
dc.subject.other Surfaces en
dc.subject.other anisotropy en
dc.subject.other elastoplasticity en
dc.subject.other hardening en
dc.subject.other kinematics en
dc.subject.other modeling en
dc.title Convexity of yield surface with directional distortional hardening rules en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)EM.1943-7889.0000077 en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000077 en
heal.identifier.secondary 013004QEM en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The present paper examines the convexity of the yield surface in the directional distortional hardening models by Feigenbaum and Dafalias. In these models anisotropy develops through kinematic and directional distortional hardening, supplemented by the classical isotropic hardening, and the associative flow rule is used. However, the issue of convexity, which naturally arises due to the distortion of the yield surface, was not fully addressed. The present paper derives the necessary and sufficient conditions to ensure convexity of the yield surface for the simpler Feigenbaum and Dafalias models, but it is not as straightforward to derive corresponding conditions for convexity of the Feigenbaum and Dafalias model version which contains an evolving fourth-order tensor. In this case convexity will be addressed first in general and then at the limit state for which simple restrictions on the material constants to ensure convexity are derived. Numerical examples will show that some of the yield surfaces simulated in the original Feigenbaum and Dafalias publication will not stay convex if loaded beyond what was done in these publications. Therefore the material constants for these cases are recalibrated based on the derived relations for satisfaction of the convexity requirement, and the fitting of the yield surfaces is repeated with the new set of constants and compared with the previous case. © 2010 ASCE. en
heal.publisher ASCE-AMER SOC CIVIL ENGINEERS en
heal.journalName Journal of Engineering Mechanics en
dc.identifier.doi 10.1061/(ASCE)EM.1943-7889.0000077 en
dc.identifier.isi ISI:000275658200009 en
dc.identifier.volume 136 en
dc.identifier.issue 4 en
dc.identifier.spage 477 en
dc.identifier.epage 484 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής