dc.contributor.author |
Moosavian, SAA |
en |
dc.contributor.author |
Papadopoulos, E |
en |
dc.date.accessioned |
2014-03-01T01:33:04Z |
|
dc.date.available |
2014-03-01T01:33:04Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1598-6446 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20304 |
|
dc.subject |
Cooperating manipulators |
en |
dc.subject |
Force control |
en |
dc.subject |
Impedance control |
en |
dc.subject |
Object manipulation |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.other |
Benchmark system |
en |
dc.subject.other |
Contact task |
en |
dc.subject.other |
Cooperating manipulators |
en |
dc.subject.other |
Error dynamics |
en |
dc.subject.other |
Free motion |
en |
dc.subject.other |
Impedance behavior |
en |
dc.subject.other |
Impedance control |
en |
dc.subject.other |
Large objects |
en |
dc.subject.other |
Manipulated objects |
en |
dc.subject.other |
Manipulation task |
en |
dc.subject.other |
Multiple impedance controls |
en |
dc.subject.other |
Object based |
en |
dc.subject.other |
Object manipulation |
en |
dc.subject.other |
Simulation result |
en |
dc.subject.other |
Switching Control |
en |
dc.subject.other |
Two-link manipulator |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Force control |
en |
dc.subject.other |
Manipulators |
en |
dc.title |
Cooperative object manipulation with contact impact using multiple impedance control |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s12555-010-0218-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s12555-010-0218-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Impedance Control imposes a desired behavior on a single manipulator interacting with its environment. The Multiple Impedance Control (MIC) enforces a designated impedance on both a manipulated object, and all cooperating manipulators. Similar to the standard impedance control, one of the benefits of this algorithm is the ability to perform both free motions and contact tasks without switching control modes. At the same time, the potentially large object inertia and other forces are taken into account. In this paper the general formulation for the MIC algorithm is developed for distinct cooperating manipulators, and important issues are detailed. Using a benchmark system, the response of the MIC algorithm is compared to that of the Object Impedance Control (OIC). It is shown that in the presence of flexibility, the MIC algorithm results in an improved performance. Next, a system of two cooperating two-link manipulators is simulated, in which a Remote Centre Compliance is attached to the second end-effector. As simulation results show, the response of the MIC algorithm is smooth, even in the presence of an impact due to collision with an obstacle. It is revealed by both error analysis and simulation that under the MIC law, all participating manipulators, and the manipulated object exhibit the same designated impedance behavior. This guarantees good tracking of manipulators and the object based on the chosen impedance laws which describe desired error dynamics, in performing a manipulation task. © ICROS, KIEE and Springer 2010. |
en |
heal.publisher |
INST CONTROL ROBOTICS & SYSTEMS, KOREAN INST ELECTRICAL ENGINEERS |
en |
heal.journalName |
International Journal of Control, Automation and Systems |
en |
dc.identifier.doi |
10.1007/s12555-010-0218-4 |
en |
dc.identifier.isi |
ISI:000276338800018 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
314 |
en |
dc.identifier.epage |
327 |
en |