dc.contributor.author | Koukios, E | en |
dc.contributor.author | Koullas, D | en |
dc.contributor.author | Koukios, ID | en |
dc.contributor.author | Avgerinos, E | en |
dc.date.accessioned | 2014-03-01T01:33:06Z | |
dc.date.available | 2014-03-01T01:33:06Z | |
dc.date.issued | 2010 | en |
dc.identifier.issn | 1618-954X | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/20317 | |
dc.subject | Critical Parameter | en |
dc.subject | Kinetics | en |
dc.subject | Supply Chain | en |
dc.subject | Value Added | en |
dc.subject | Decision Maker | en |
dc.subject | Wheat Bran | en |
dc.subject.other | Agroindustries | en |
dc.subject.other | Bio-energy | en |
dc.subject.other | Bio-hydrogen | en |
dc.subject.other | Biorefineries | en |
dc.subject.other | Biorefining | en |
dc.subject.other | Critical information | en |
dc.subject.other | Critical parameter | en |
dc.subject.other | Decentralised | en |
dc.subject.other | Decision makers | en |
dc.subject.other | Fossil hydrocarbons | en |
dc.subject.other | Kinetic aspects | en |
dc.subject.other | Optimal energy | en |
dc.subject.other | Physico-chemicals | en |
dc.subject.other | Plant fractions | en |
dc.subject.other | Wheat bran | en |
dc.subject.other | Wood supply | en |
dc.subject.other | Decision making | en |
dc.subject.other | Hydrocarbons | en |
dc.subject.other | Optimization | en |
dc.subject.other | Supply chains | en |
dc.subject.other | Bioconversion | en |
dc.subject.other | Triticum aestivum | en |
dc.title | Critical parameters for optimal biomass refineries: The case of biohydrogen | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1007/s10098-009-0239-y | en |
heal.identifier.secondary | http://dx.doi.org/10.1007/s10098-009-0239-y | en |
heal.language | English | en |
heal.publicationDate | 2010 | en |
heal.abstract | The object of this paper is to identify and assess the elements taken from agro-industries and fossil hydrocarbon refineries, especially with respect to biomass logistics, fractionation kinetics, and process energetics. Such critical information will be of immediate use by policy and decision makers, especially in the early phase of planning and designing the first generation of biorefineries. Concerning feedstock logistics, biorefineries have a lot to learn from food and wood supply chains. This learning could lead to the deployment of complex, decentralised, stage-wise biorefining systems, consisting of local agrorefineries, regional biorefineries, where the primary plant fractions are processed and upgraded to useful intermediates, and central bioconversion units for the generation of market-grade biofuels, such as biohydrogen and other high value-added vectors. The kinetic aspects of biorefineries are related to the physico-chemical nature of the macromolecules. Finally, to solve the problem of the non-optimal energy transformations a tailored-up bioenergy plan is roposed for each biorefinery. The example of a wheat bran-based biorefinery, aiming at the production of biohydrogen will be used to illustrate the way ahead. © Springer-Verlag 2009. | en |
heal.publisher | SPRINGER | en |
heal.journalName | Clean Technologies and Environmental Policy | en |
dc.identifier.doi | 10.1007/s10098-009-0239-y | en |
dc.identifier.isi | ISI:000275952500018 | en |
dc.identifier.volume | 12 | en |
dc.identifier.issue | 2 | en |
dc.identifier.spage | 147 | en |
dc.identifier.epage | 151 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |