HEAL DSpace

Detailed dynamic Solid Oxide Fuel Cell modeling for electrochemical impedance spectra simulation

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Hofmann, P en
dc.contributor.author Panopoulos, KD en
dc.date.accessioned 2014-03-01T01:33:07Z
dc.date.available 2014-03-01T01:33:07Z
dc.date.issued 2010 en
dc.identifier.issn 0378-7753 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20336
dc.subject Solid oxide fuel cell (SOFC) en
dc.subject Impedance en
dc.subject EIS en
dc.subject gPROMS (TM) en
dc.subject Simulation en
dc.subject.classification Electrochemistry en
dc.subject.classification Energy & Fuels en
dc.subject.other 3-ELECTRODE METHODS en
dc.subject.other SOFC en
dc.subject.other GAS en
dc.subject.other SPECTROSCOPY en
dc.subject.other DIFFUSION en
dc.subject.other ANODES en
dc.subject.other DISTORTIONS en
dc.subject.other OPERATION en
dc.subject.other TRANSPORT en
dc.subject.other GEOMETRY en
dc.title Detailed dynamic Solid Oxide Fuel Cell modeling for electrochemical impedance spectra simulation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jpowsour.2010.02.046 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jpowsour.2010.02.046 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract This paper presents a detailed flexible mathematical model for planar solid oxide fuel cells (SOFCs), which allows the simulation of steady-state performance characteristics, i.e. voltage-current density (V-j) curves, and dynamic operation behavior, with a special capability of simulating electrochemical impedance spectroscopy (EIS). The model is based on physico-chemical governing equations coupled with a detailed multi-component gas diffusion mechanism (Dusty-Gas Model (DGM)) and a multi-step heterogeneous reaction mechanism implicitly accounting for the water-gas-shift (WGS), methane reforming and Boudouard reactions. Spatial discretization can be applied for 1D (button-cell approximation) up to quasi-3D (full size anode supported cell in cross-flow configuration) geometries and is resolved with the finite difference method (FDM). The model is built and implemented on the commercially available modeling and simulations platform gPROMS (TM). Different fuels based on hydrogen, methane and syngas with inert diluents are run. The model is applied to demonstrate a detailed analysis of the SOFC inherent losses and their attribution to the EIS. This is achieved by means of a step-by-step analysis of the involved transient processes such as gas conversion in the main gas chambers/channels, gas diffusion through the porous electrodes together with the heterogeneous reactions on the nickel catalyst, and the double-layer current within the electrochemical reaction zone. The model is an important tool for analyzing SOFC performance fundamentals as well as for design and optimization of materials' and operational parameters. (C) 2010 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName JOURNAL OF POWER SOURCES en
dc.identifier.doi 10.1016/j.jpowsour.2010.02.046 en
dc.identifier.isi ISI:000277868600019 en
dc.identifier.volume 195 en
dc.identifier.issue 16 en
dc.identifier.spage 5320 en
dc.identifier.epage 5339 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record