dc.contributor.author |
Sant, M |
en |
dc.contributor.author |
Papadopoulos, GK |
en |
dc.contributor.author |
Theodorou, DN |
en |
dc.date.accessioned |
2014-03-01T01:33:09Z |
|
dc.date.available |
2014-03-01T01:33:09Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0021-9606 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20352 |
|
dc.subject |
carbon compounds |
en |
dc.subject |
Markov processes |
en |
dc.subject |
organic compounds |
en |
dc.subject |
self-diffusion |
en |
dc.subject |
zeolites |
en |
dc.subject.classification |
Physics, Atomic, Molecular & Chemical |
en |
dc.subject.other |
Concentration dependence |
en |
dc.subject.other |
Diffusivities |
en |
dc.subject.other |
Markov process model |
en |
dc.subject.other |
Model parameters |
en |
dc.subject.other |
Novel methods |
en |
dc.subject.other |
Periodic media |
en |
dc.subject.other |
Physical meanings |
en |
dc.subject.other |
Pore networks |
en |
dc.subject.other |
Second orders |
en |
dc.subject.other |
Self-diffusion coefficients |
en |
dc.subject.other |
Self-diffusivity |
en |
dc.subject.other |
Space discretizations |
en |
dc.subject.other |
Two parameter |
en |
dc.subject.other |
Unique decomposition |
en |
dc.subject.other |
Carbon dioxide |
en |
dc.subject.other |
Concentration (process) |
en |
dc.subject.other |
Discrete event simulation |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Methane |
en |
dc.subject.other |
Diffusion |
en |
dc.title |
Diffusion via space discretization method to study the concentration dependence of self-diffusivity under confinement |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.3370344 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.3370344 |
en |
heal.identifier.secondary |
134108 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The concentration dependence of self-diffusivity is investigated by means of a novel method, extending our previously developed second-order Markov process model to periodic media. Introducing the concept of minimum-crossing surface, we obtain a unique decomposition of the self-diffusion coefficient into two parameters with specific physical meanings. Two case studies showing a maximum in self-diffusivity as a function of concentration are investigated, along with two cases where such a maximum cannot be present. Subsequently, the method is applied to the large cavity pore network of the ITQ-1 (Mobil tWenty tWo, MWW) zeolite for methane (displaying a maximum in self-diffusivity) and carbon dioxide (no maximum), explaining the diffusivity trend on the basis of the evolution of the model parameters as a function of concentration. © 2010 American Institute of Physics. |
en |
heal.publisher |
AMER INST PHYSICS |
en |
heal.journalName |
Journal of Chemical Physics |
en |
dc.identifier.doi |
10.1063/1.3370344 |
en |
dc.identifier.isi |
ISI:000276972600010 |
en |
dc.identifier.volume |
132 |
en |
dc.identifier.issue |
13 |
en |