HEAL DSpace

Efficient parallel decomposition of dynamical sampling in glass-forming materials based on an ""on the fly"" definition of metabasins

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsalikis, DG en
dc.contributor.author Lempesis, N en
dc.contributor.author Boulougouris, GC en
dc.contributor.author Theodorou, DN en
dc.date.accessioned 2014-03-01T01:33:20Z
dc.date.available 2014-03-01T01:33:20Z
dc.date.issued 2010 en
dc.identifier.issn 1549-9618 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20384
dc.subject On The Fly en
dc.subject.classification Chemistry, Multidisciplinary en
dc.subject.other PROTEIN-FOLDING KINETICS en
dc.subject.other LENNARD-JONES MIXTURE en
dc.subject.other MODE-COUPLING THEORY en
dc.subject.other MOLECULAR-DYNAMICS en
dc.subject.other SUPERCOOLED LIQUIDS en
dc.subject.other INHERENT STRUCTURES en
dc.subject.other MONTE-CARLO en
dc.subject.other POTENTIAL SURFACES en
dc.subject.other INFREQUENT EVENTS en
dc.subject.other BROWNIAN DYNAMICS en
dc.title Efficient parallel decomposition of dynamical sampling in glass-forming materials based on an ""on the fly"" definition of metabasins en
heal.type journalArticle en
heal.identifier.primary 10.1021/ct9004245 en
heal.identifier.secondary http://dx.doi.org/10.1021/ct9004245 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this work, we propose a highly parallelizable sampling scheme designed for atomistic simulations of glassy materials in the vicinity of the glass-transition temperature Tg, based on the idea of inherent structures (IS). Glassy dynamics is envisioned as a combination of two types of motions: (a) an ""in basin"" vibrational motion in the vicinity of a potential energy minimum (IS), and (b) transitions from one basin to another. In order to perform efficient dynamical sampling in the vicinity of Tg, we propose an ""on the fly"" definition of metabasins (i.e., collections of basins communicating via fast transitions in which the system spends a sufficient time before moving on to a neighboring collection). Our criterion for defining metabasins is based on the rate of identification of new basins in the course of a canonical molecular dynamics (MD) run. In order to compute individual rate constants between basins and metabasins, we propose to follow a swarm of microcanonical MD trajectories initiated at phase-space points sampled by a canonical MD run that is artificially trapped within a metabasin. The execution time required by this highly parallelizable scheme is reduced dramatically, since no information exchange takes place between the microcanonical trajectories. Results from our parallel methodology are compared against results from artificially trapped canonical MD runs, in terms of the evaluated rate constants, and found to be in very good agreement. Parallel simulations have been conducted on up to 250 processors, achieving almost linear scaling. The validity of our definition of metabasins is confirmed by analysis of the resulting network of basins. © 2010 American Chemical Society. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName Journal of Chemical Theory and Computation en
dc.identifier.doi 10.1021/ct9004245 en
dc.identifier.isi ISI:000276558100029 en
dc.identifier.volume 6 en
dc.identifier.issue 4 en
dc.identifier.spage 1307 en
dc.identifier.epage 1322 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής