dc.contributor.author |
Katsivelis, PK |
en |
dc.contributor.author |
Fotis, GP |
en |
dc.contributor.author |
Gonos, IF |
en |
dc.contributor.author |
Koussiouris, TG |
en |
dc.contributor.author |
Stathopulos, IA |
en |
dc.date.accessioned |
2014-03-01T01:33:21Z |
|
dc.date.available |
2014-03-01T01:33:21Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1996-1073 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20392 |
|
dc.subject |
Approximation method |
en |
dc.subject |
Electrostatic discharge circuit |
en |
dc.subject |
Electrostatic discharge current |
en |
dc.subject |
Linear system |
en |
dc.subject.other |
Active elements |
en |
dc.subject.other |
Approximation methods |
en |
dc.subject.other |
Charged bodies |
en |
dc.subject.other |
Circuit designs |
en |
dc.subject.other |
Circuit synthesis |
en |
dc.subject.other |
Current waveforms |
en |
dc.subject.other |
Electronic device |
en |
dc.subject.other |
Electrostatic discharge circuits |
en |
dc.subject.other |
Electrostatic discharge current |
en |
dc.subject.other |
Electrostatic discharge currents |
en |
dc.subject.other |
Electrostatic discharge phenomena |
en |
dc.subject.other |
Linear approach |
en |
dc.subject.other |
Mathematical approach |
en |
dc.subject.other |
Prony's method |
en |
dc.subject.other |
Pspice software |
en |
dc.subject.other |
Wave forms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Computer software |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Electrostatic discharge |
en |
dc.subject.other |
Integrated circuit manufacture |
en |
dc.subject.other |
Linear systems |
en |
dc.subject.other |
Signal filtering and prediction |
en |
dc.subject.other |
SPICE |
en |
dc.subject.other |
Electrostatic devices |
en |
dc.title |
Electrostatic discharge current linear approach and circuit design method |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3390/en3111728 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3390/en3111728 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The Electrostatic Discharge phenomenon is a great threat to all electronic devices and ICs. An electric charge passing rapidly from a charged body to another can seriously harm the last one. However, there is a lack in a linear mathematical approach which will make it possible to design a circuit capable of producing such a sophisticated current waveform. The commonly accepted Electrostatic Discharge current waveform is the one set by the IEC 61000-4-2. However, the over-simplified circuit included in the same standard is incapable of producing such a waveform. Treating the Electrostatic Discharge current waveform of the IEC 61000-4-2 as reference, an approximation method, based on Prony's method, is developed and applied in order to obtain a linear system's response. Considering a known input, a method to design a circuit, able to generate this ESD current waveform in presented. The circuit synthesis assumes ideal active elements. A simulation is carried out using the PSpice software. © 2010 by the authors. |
en |
heal.publisher |
MDPI AG |
en |
heal.journalName |
Energies |
en |
dc.identifier.doi |
10.3390/en3111728 |
en |
dc.identifier.isi |
ISI:000284576300003 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1728 |
en |
dc.identifier.epage |
1740 |
en |