HEAL DSpace

Entry flow of polyethylene melts in tapered dies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ansari, M en
dc.contributor.author Alabbas, A en
dc.contributor.author Hatzikiriakos, SG en
dc.contributor.author Mitsoulis, E en
dc.date.accessioned 2014-03-01T01:33:22Z
dc.date.available 2014-03-01T01:33:22Z
dc.date.issued 2010 en
dc.identifier.issn 0930-777X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20398
dc.subject Polyethylene en
dc.subject.classification Engineering, Chemical en
dc.subject.classification Polymer Science en
dc.subject.other Contraction angles en
dc.subject.other Contraction flow en
dc.subject.other Cross model en
dc.subject.other End effects en
dc.subject.other Excess pressure en
dc.subject.other Extensional viscosity en
dc.subject.other Fluoropolymer en
dc.subject.other Local minimums en
dc.subject.other Multimodes en
dc.subject.other No-slip boundary conditions en
dc.subject.other No-slip condition en
dc.subject.other Numerical simulation en
dc.subject.other Order of magnitude en
dc.subject.other Polyethylene melt en
dc.subject.other Shear rates en
dc.subject.other Slip condition en
dc.subject.other Viscoelastic models en
dc.subject.other Viscoelastic spectra en
dc.subject.other Viscous models en
dc.subject.other Birefringence en
dc.subject.other Fluorine containing polymers en
dc.subject.other Optimization en
dc.subject.other Polyethylenes en
dc.subject.other Pressure drop en
dc.subject.other Shear deformation en
dc.subject.other Thermoplastics en
dc.subject.other Vehicular tunnels en
dc.subject.other Viscosity en
dc.subject.other Computer simulation en
dc.title Entry flow of polyethylene melts in tapered dies en
heal.type journalArticle en
heal.identifier.primary 10.3139/217.2360 en
heal.identifier.secondary http://dx.doi.org/10.3139/217.2360 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The excess pressure losses due to end effects (mainly entrance) in the capillary flow of several types of polyethylenes were studied both experimentally and numerically under slip and no-slip conditions. These losses were first measured as a function of the contraction angle ranging from 15° to 90°. It was found that the excess pressure loss attains a local minimum at a contraction angle of about 30° for all types of polyethylenes examined. This was found to be independent of the apparent shear rate. This minimum becomes more dominant under slip conditions that were imposed by adding a significant amount of fluoropolymer into the polymer. Numerical simulations using a multimode K-BKZ viscoelastic model have shown that the entrance pressure drops can be predicted fairly well for all cases either under slip or no-slip boundary conditions. The clear experimental minimum at about 30° can only slightly be seen in numerical simulations, and at this point its origin is unknown. Further simulations with a viscous (Cross) model have shown that they severely under-predict the entrance pressure by an order of magnitude for the more elastic melts. Thus, the viscoelastic spectrum together with the extensional viscosity play a significant role in predicting the pressure drop in contraction flows, as no viscous model could. The larger the average relaxation time and the extensional viscosity are, the higher the differences in the predictions between the K-KBZ and Cross models are. © Carl Hanser Verlag, Munich. en
heal.publisher CARL HANSER VERLAG en
heal.journalName International Polymer Processing en
dc.identifier.doi 10.3139/217.2360 en
dc.identifier.isi ISI:000280878000004 en
dc.identifier.volume 25 en
dc.identifier.issue 4 en
dc.identifier.spage 287 en
dc.identifier.epage 296 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής