dc.contributor.author |
Liodakis, S |
en |
dc.contributor.author |
Tsoukala, M |
en |
dc.date.accessioned |
2014-03-01T01:33:22Z |
|
dc.date.available |
2014-03-01T01:33:22Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0269-4042 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20399 |
|
dc.subject |
Analytical techniques |
en |
dc.subject |
Diammonium phosphate |
en |
dc.subject |
Huntite |
en |
dc.subject |
Hydromagnesite |
en |
dc.subject |
Mineralogy and leaching of ash |
en |
dc.subject |
Pinus halepensis ash |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Public, Environmental & Occupational Health |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
carbon |
en |
dc.subject.other |
flame retardant |
en |
dc.subject.other |
magnesium |
en |
dc.subject.other |
magnesium carbonate |
en |
dc.subject.other |
metal |
en |
dc.subject.other |
mineral |
en |
dc.subject.other |
phosphate |
en |
dc.subject.other |
phosphoric acid |
en |
dc.subject.other |
ammonium compound |
en |
dc.subject.other |
analytical method |
en |
dc.subject.other |
ash |
en |
dc.subject.other |
carbonate group |
en |
dc.subject.other |
leaching |
en |
dc.subject.other |
magnesium |
en |
dc.subject.other |
mineralogy |
en |
dc.subject.other |
phosphate |
en |
dc.subject.other |
wildfire |
en |
dc.subject.other |
article |
en |
dc.subject.other |
atomic absorption spectrometry |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
comparative study |
en |
dc.subject.other |
environmental monitoring |
en |
dc.subject.other |
fire |
en |
dc.subject.other |
fly ash |
en |
dc.subject.other |
isolation and purification |
en |
dc.subject.other |
particulate matter |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
pine |
en |
dc.subject.other |
soil pollutant |
en |
dc.subject.other |
solubility |
en |
dc.subject.other |
water pollutant |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
Carbon |
en |
dc.subject.other |
Environmental Monitoring |
en |
dc.subject.other |
Fires |
en |
dc.subject.other |
Flame Retardants |
en |
dc.subject.other |
Hydrogen-Ion Concentration |
en |
dc.subject.other |
Magnesium |
en |
dc.subject.other |
Metals |
en |
dc.subject.other |
Minerals |
en |
dc.subject.other |
Particulate Matter |
en |
dc.subject.other |
Phosphates |
en |
dc.subject.other |
Phosphoric Acids |
en |
dc.subject.other |
Pinus |
en |
dc.subject.other |
Soil Pollutants |
en |
dc.subject.other |
Solubility |
en |
dc.subject.other |
Spectrophotometry, Atomic |
en |
dc.subject.other |
Water Pollutants, Chemical |
en |
dc.subject.other |
X-Ray Diffraction |
en |
dc.subject.other |
Pinus halepensis |
en |
dc.title |
Environmental benefits of using magnesium carbonate minerals as new wildfire retardants instead of commercially available, phosphate-based compounds |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10653-009-9283-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10653-009-9283-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A serial batch leaching experiment has been carried out to evaluate the release of elements from the ash of Pinus halepensis needles burned under two test conditions-with and without treatment of the forest species with the carbonate minerals (huntite and hydromagnesite) in aqueous solution (pH 6). The ash (before and after leaching) and leachates were analyzed using atomic absorption spectroscopy and X-ray diffraction. Compared with data from samples treated with the commercially available, phosphate-based fire retardant diammonium phosphate (DAP), we found that use of huntite or hydromagnesite was much more successful in obstructing the release of the toxic elements present in the ash, probably because of the alkaline conditions resulting from decomposition of the minerals during burning. In contrast, DAP tended to be more able to facilitate the extraction of some toxic metals (e. g., Zn, Cu, Mn), probably because of the acidic conditions resulting from its decomposition to phosphoric acid. Data from this study thus lend strong support to the use of magnesium carbonate minerals as new wildfire retardants, because they were shown to be more friendly to the environment (e. g., soil, ground, and underground water streams) than those currently in use (e. g., phosphate or sulfate salt type). © 2009 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Environmental Geochemistry and Health |
en |
dc.identifier.doi |
10.1007/s10653-009-9283-0 |
en |
dc.identifier.isi |
ISI:000281936400002 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
391 |
en |
dc.identifier.epage |
399 |
en |