HEAL DSpace

Error analysis of a multi-cell groundwater model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rozos, E en
dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T01:33:23Z
dc.date.available 2014-03-01T01:33:23Z
dc.date.issued 2010 en
dc.identifier.issn 0022-1694 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20405
dc.subject Finite difference method en
dc.subject Finite Volume Method en
dc.subject Integrated finite difference method en
dc.subject Multi-cell groundwater models en
dc.subject Representational error en
dc.subject Truncation error en
dc.subject.classification Engineering, Civil en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.classification Water Resources en
dc.subject.other Finite volume en
dc.subject.other Integrated finite difference method en
dc.subject.other Multicell en
dc.subject.other Representational error en
dc.subject.other Truncation errors en
dc.subject.other Aquifers en
dc.subject.other Cells en
dc.subject.other Cytology en
dc.subject.other Error analysis en
dc.subject.other Finite difference method en
dc.subject.other Finite volume method en
dc.subject.other Groundwater resources en
dc.subject.other Models en
dc.subject.other Computer simulation en
dc.subject.other aquifer en
dc.subject.other error analysis en
dc.subject.other finite difference method en
dc.subject.other finite volume method en
dc.subject.other flow modeling en
dc.subject.other groundwater flow en
dc.subject.other parameterization en
dc.title Error analysis of a multi-cell groundwater model en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jhydrol.2010.07.036 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jhydrol.2010.07.036 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The basic advantages of the multi-cell groundwater models are the parsimony, speed, and simplicity that make them ideal for hydrological applications, particularly when data are insufficient and/or repeated simulations are needed. However, the multi-cell models, in their basic version, are conceptual models and their parameters do not have physical meaning. This disadvantage may be overcome by the Narasimhan and Witherspoon's integrated finite difference method, which, however, demands that the cells' geometry conforms to the equipotential and no-flow lines. This restriction cannot be strictly satisfied in every application. Particularly in transient conditions, a mesh with static geometry cannot conform constantly to the varying flow kinematics. In this study, we analyse the error when this restriction is not strictly satisfied and we identify the contribution of this error to the overall error of a multi-cell model. The study is experimental based on a synthetic aquifer with characteristics carefully selected so as to be representative of real-world situations, but obviously the results of these investigations cannot be generalized to every type of aquifer. Nonetheless these results indicate that the error due to non-conformity to the aforementioned restriction plays a minor role in the overall model error and that the overall error of the multi-cell models with conditionally designed cells is comparable to the error of finite difference models with much denser discretization. Therefore the multi-cell models should be considered as an alternative option, especially in the cases where a discretization with a flexible mesh is indicated or in the cases where repeated model runs are required. (c) 2010 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Hydrology en
dc.identifier.doi 10.1016/j.jhydrol.2010.07.036 en
dc.identifier.isi ISI:000282860800003 en
dc.identifier.volume 392 en
dc.identifier.issue 1-2 en
dc.identifier.spage 22 en
dc.identifier.epage 30 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής