dc.contributor.author |
Kadianakis, N |
en |
dc.date.accessioned |
2014-03-01T01:33:27Z |
|
dc.date.available |
2014-03-01T01:33:27Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0374-3535 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20426 |
|
dc.subject |
Kinematics |
en |
dc.subject |
Membranes |
en |
dc.subject |
Surfaces |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Field theory |
en |
dc.subject.other |
Gauss curvature |
en |
dc.subject.other |
Geometrical quantities |
en |
dc.subject.other |
Moving surfaces |
en |
dc.subject.other |
Non-linear |
en |
dc.subject.other |
Polar decompositions |
en |
dc.subject.other |
San Diego |
en |
dc.subject.other |
Second fundamental form |
en |
dc.subject.other |
Shape operators |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Domain decomposition methods |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Two dimensional |
en |
dc.subject.other |
Membranes |
en |
dc.title |
Evolution of surfaces and the kinematics of membranes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10659-009-9226-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10659-009-9226-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The polar decomposition theorem for a two dimensional continuum (a membrane) is used to produce a set of equations that describe the evolution of the geometrical quantities of a moving surface, i.e., the metric, the unit normal, the shape operator, the second fundamental form, the mean and the Gauss curvature. A link to the kinematical quantities of the continuum is also given. The version of the polar decomposition theorem for membranes we use was proved by Chi-Sing Man and H. Cohen (J. Elast. 16:97-104, 1986). Both the geometric and the kinematical framework are coordinate-free, in an attempt to contribute to a coordinate-free description for the kinematics of membranes in analogy to the kinematics of three dimensional continuum bodies as it emerges from the classical works of Noll (Arch. Rat. Mech. Anal. 2:197-226, 1958), Truesdell and Noll (The Non-linear Field Theories of Mechanics, 3rd edn., Springer, Berlin, 2004), Truesdell (A First Course in Rational Continuum Mechanics, vol. 1, Academic Press, San Diego, 1977). © 2009 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Elasticity |
en |
dc.identifier.doi |
10.1007/s10659-009-9226-0 |
en |
dc.identifier.isi |
ISI:000274251600001 |
en |
dc.identifier.volume |
99 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
17 |
en |