HEAL DSpace

Exact Analytic Solutions of the Plastic Spin Equations in Simple Shear

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panayotounakos, DE en
dc.contributor.author Theotokoglou, EE en
dc.contributor.author Sotiropoulos, NB en
dc.contributor.author Sotiropoulou, AB en
dc.date.accessioned 2014-03-01T01:33:27Z
dc.date.available 2014-03-01T01:33:27Z
dc.date.issued 2010 en
dc.identifier.issn 1081-2865 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20427
dc.subject Abel equations en
dc.subject Nonlinear ordinary differential equations en
dc.subject Plastic spin equations en
dc.subject Simple shear en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Abel equation en
dc.subject.other Analytic solution en
dc.subject.other Differential systems en
dc.subject.other Exact analytic solutions en
dc.subject.other First-order en
dc.subject.other Functional transformation en
dc.subject.other Mathematical solutions en
dc.subject.other Nonlinear differential systems en
dc.subject.other Nonlinear ordinary differential equation en
dc.subject.other Normal form en
dc.subject.other Parametric forms en
dc.subject.other Plastic spin en
dc.subject.other Simple shear en
dc.subject.other Volterra en
dc.subject.other Functional polymers en
dc.subject.other Integral equations en
dc.subject.other Ordinary differential equations en
dc.subject.other Plastics en
dc.subject.other Spin dynamics en
dc.subject.other Nonlinear equations en
dc.title Exact Analytic Solutions of the Plastic Spin Equations in Simple Shear en
heal.type journalArticle en
heal.identifier.primary 10.1177/1081286508095193 en
heal.identifier.secondary http://dx.doi.org/10.1177/1081286508095193 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract We prove that the first-order nonlinear differential system governing the plastic spin response in simple shear (Dafaliasgs equations) is reduced to an equivalent equation of the Abel normal form by means of admissible functional transformations. In similar Abel equations result also the original and the generalized Volterra differential systems, describing the problem of two populations conflicting with one another. The above reduced Abel equations do not admit exact analytic solutions in terms of known (tabulated) functions, since only very special cases of these types of equations can be analytically solved in parametric form. We provide a mathematical solution methodology leading to the construction of exact implicit analytic solutions of the above-mentioned type of equations. Since the plastic spin nonlinear differential system results in a special unsolvable form of Abelgs equation of the normal form, we perform the exact implicit analytic solution of this system too. © 2010 Sage Publications. en
heal.publisher SAGE PUBLICATIONS LTD en
heal.journalName Mathematics and Mechanics of Solids en
dc.identifier.doi 10.1177/1081286508095193 en
dc.identifier.isi ISI:000274912800001 en
dc.identifier.volume 15 en
dc.identifier.issue 2 en
dc.identifier.spage 147 en
dc.identifier.epage 164 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής