dc.contributor.author |
Katsou, E |
en |
dc.contributor.author |
Malamis, S |
en |
dc.contributor.author |
Haralambous, K |
en |
dc.date.accessioned |
2014-03-01T01:33:27Z |
|
dc.date.available |
2014-03-01T01:33:27Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0304-3894 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20428 |
|
dc.subject |
Fouling |
en |
dc.subject |
Minerals |
en |
dc.subject |
Sludge |
en |
dc.subject |
Ultrafiltration membranes |
en |
dc.subject |
Zinc removal |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Activated sludge |
en |
dc.subject.other |
Adsorption process |
en |
dc.subject.other |
Alkaline pH |
en |
dc.subject.other |
Chemical precipitation |
en |
dc.subject.other |
Combined system |
en |
dc.subject.other |
Contact time |
en |
dc.subject.other |
Diffusion process |
en |
dc.subject.other |
Filtration process |
en |
dc.subject.other |
Grain size |
en |
dc.subject.other |
Industrial wastewaters |
en |
dc.subject.other |
Initial concentration |
en |
dc.subject.other |
Intra-particle diffusion |
en |
dc.subject.other |
Membrane bioreactor |
en |
dc.subject.other |
Membrane permeability |
en |
dc.subject.other |
Mineral addition |
en |
dc.subject.other |
Mixed liquor suspended solids |
en |
dc.subject.other |
Natural minerals |
en |
dc.subject.other |
pH value |
en |
dc.subject.other |
Powder size |
en |
dc.subject.other |
Removal efficiencies |
en |
dc.subject.other |
Sludge flocs |
en |
dc.subject.other |
Specific concentration |
en |
dc.subject.other |
Two stage |
en |
dc.subject.other |
Ultra-filtration membranes |
en |
dc.subject.other |
Zinc concentration |
en |
dc.subject.other |
Zinc ions |
en |
dc.subject.other |
Zinc removal |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Bentonite |
en |
dc.subject.other |
Biological water treatment |
en |
dc.subject.other |
Bioreactors |
en |
dc.subject.other |
Biosorption |
en |
dc.subject.other |
Clay minerals |
en |
dc.subject.other |
Concentration (process) |
en |
dc.subject.other |
Industrial water treatment |
en |
dc.subject.other |
Membrane fouling |
en |
dc.subject.other |
Membranes |
en |
dc.subject.other |
Minerals |
en |
dc.subject.other |
pH effects |
en |
dc.subject.other |
Precipitation (chemical) |
en |
dc.subject.other |
Silicate minerals |
en |
dc.subject.other |
Ultrafiltration |
en |
dc.subject.other |
Wastewater |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
Water filtration |
en |
dc.subject.other |
Zinc |
en |
dc.subject.other |
Zinc compounds |
en |
dc.subject.other |
Chemicals removal (water treatment) |
en |
dc.subject.other |
bentonite |
en |
dc.subject.other |
vermiculite |
en |
dc.subject.other |
zeolite |
en |
dc.subject.other |
zinc ion |
en |
dc.subject.other |
activated sludge |
en |
dc.subject.other |
bentonite |
en |
dc.subject.other |
bioreactor |
en |
dc.subject.other |
diffusion |
en |
dc.subject.other |
fouling |
en |
dc.subject.other |
grain size |
en |
dc.subject.other |
membrane |
en |
dc.subject.other |
mineral |
en |
dc.subject.other |
permeability |
en |
dc.subject.other |
pollutant removal |
en |
dc.subject.other |
precipitation (chemistry) |
en |
dc.subject.other |
reaction kinetics |
en |
dc.subject.other |
suspended load |
en |
dc.subject.other |
ultrafiltration |
en |
dc.subject.other |
vermiculite |
en |
dc.subject.other |
waste treatment |
en |
dc.subject.other |
wastewater |
en |
dc.subject.other |
zinc |
en |
dc.subject.other |
activated sludge |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
alkalinity |
en |
dc.subject.other |
article |
en |
dc.subject.other |
biosorption |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
enzyme membrane bioreactor |
en |
dc.subject.other |
grain |
en |
dc.subject.other |
industrial waste |
en |
dc.subject.other |
kinetics |
en |
dc.subject.other |
liquid |
en |
dc.subject.other |
membrane permeability |
en |
dc.subject.other |
particle size |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
precipitation |
en |
dc.subject.other |
suspended particulate matter |
en |
dc.subject.other |
ultrafiltration |
en |
dc.subject.other |
waste water management |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Hydrogen-Ion Concentration |
en |
dc.subject.other |
Kinetics |
en |
dc.subject.other |
Membranes, Artificial |
en |
dc.subject.other |
Minerals |
en |
dc.subject.other |
Sewage |
en |
dc.subject.other |
Ultrafiltration |
en |
dc.subject.other |
Zinc |
en |
dc.title |
Examination of zinc uptake in a combined system using sludge, minerals and ultrafiltration membranes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jhazmat.2010.05.101 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jhazmat.2010.05.101 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This work investigates the feasibility of zinc removal from wastewater with the use of ultrafiltration (UF) membranes combined with natural minerals and sludge. Activated sludge obtained from a membrane bioreactor (MBR) was enriched with initial zinc concentration of 320 mg/L and specific concentrations of zeolite, bentonite and vermiculite. The mixture was agitated and placed inside a batch ultrafiltration unit where the filtration process took place. The effect of several parameters on zinc removal was investigated including the mineral type, quantity and grain size, the metal-mineral contact time and the associated kinetics, the pH value, the zinc initial concentration and sludge mixed liquor suspended solids (MISS) concentration. The ultrafiltration membranes without any mineral addition were able to remove 38-78% of zinc ions due to biosorption on sludge flocs. The addition of minerals increased the Zn(II) removal efficiencies reaching in some cases more than 90%. Bentonite was the most effective mineral in zinc removal followed by vermiculite. Alkaline pH values favoured zinc removal due to enhanced chemical precipitation. A three-stage adsorption process was identified where the boundary layer diffusion process was followed by a two-stage intraparticle diffusion process. Powder size vermiculite was more effective than granular vermiculite in zinc removal. Minerals also resulted in membrane fouling mitigation since the membrane permeability drop was reduced. The combined sludge-mineral-ultrafiltration system can be effectively employed for the treatment of industrial wastewater. (C) 2010 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Hazardous Materials |
en |
dc.identifier.doi |
10.1016/j.jhazmat.2010.05.101 |
en |
dc.identifier.isi |
ISI:000282240800004 |
en |
dc.identifier.volume |
182 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
27 |
en |
dc.identifier.epage |
38 |
en |