dc.contributor.author |
Latos, EA |
en |
dc.contributor.author |
Tzanetis, DE |
en |
dc.date.accessioned |
2014-03-01T01:33:28Z |
|
dc.date.available |
2014-03-01T01:33:28Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0013-0915 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20430 |
|
dc.subject |
blow-up |
en |
dc.subject |
existence |
en |
dc.subject |
filtration equation |
en |
dc.subject |
non-local parabolic problems |
en |
dc.subject |
porous medium |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
DEGENERATE PARABOLIC EQUATIONS |
en |
dc.subject.other |
ASYMPTOTIC-BEHAVIOR |
en |
dc.title |
Existence and blow-up of solutions for a non-local filtration and porous medium problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0013091508000163 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0013091508000163 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider a non-local filtration equation of the form ut = ΔK(u)+λf(u)(∫Ωf(u)dx)-p and a porous medium equation, in this case K(u) = um, with some boundary and initial data u0, where 0 < p < 1 and f, f′, f″ > 0. We prove blow-up of solutions for sufficiently large values of the parameter λ > 0 and for any u0 > 0, or for sufficiently large values of u0 > 0 and for any λ > 0. © 2010 Edinburgh Mathematical Society. |
en |
heal.publisher |
CAMBRIDGE UNIV PRESS |
en |
heal.journalName |
Proceedings of the Edinburgh Mathematical Society |
en |
dc.identifier.doi |
10.1017/S0013091508000163 |
en |
dc.identifier.isi |
ISI:000274173000013 |
en |
dc.identifier.volume |
53 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
195 |
en |
dc.identifier.epage |
209 |
en |