dc.contributor.author |
Aizicovici, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:33:28Z |
|
dc.date.available |
2014-03-01T01:33:28Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1230-3429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20432 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77956305714&partnerID=40&md5=677c8a895d96465587c6dc806ae7d485 |
en |
dc.subject |
Homological local linking |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Neumann p-laplacian |
en |
dc.subject |
Resonant problems |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
LOCAL MINIMIZERS |
en |
dc.subject.other |
CRITICAL-POINTS |
en |
dc.subject.other |
THEOREM |
en |
dc.subject.other |
SPECTRUM |
en |
dc.title |
Existence and multiplicity of solutions for resonant nonlinear neumann problems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider nonlinear Neumann problems driven by the pLaplacian differential operator with a Caratheodory nonlinearity. Under hypotheses which allow resonance with respect to the principal eigenvalue λ0 = 0 at ±∞, we prove existence and multiplicity results. Our approach is variational and uses critical point theory and Morse theory (critical groups). © 2010 Juliusz Schauder Center for Nonlinear Studies. |
en |
heal.publisher |
JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
en |
heal.journalName |
Topological Methods in Nonlinear Analysis |
en |
dc.identifier.isi |
ISI:000278833700003 |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
235 |
en |
dc.identifier.epage |
252 |
en |