dc.contributor.author |
Palamides, AP |
en |
dc.contributor.author |
Stavrakakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:33:28Z |
|
dc.date.available |
2014-03-01T01:33:28Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1072-6691 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20433 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-78649704314&partnerID=40&md5=4398b18969da5b9f3d5a4c80248fac99 |
en |
dc.subject |
Existence |
en |
dc.subject |
Fixed points in cones |
en |
dc.subject |
Green's functions |
en |
dc.subject |
Positive solutions |
en |
dc.subject |
Third order differential equation |
en |
dc.subject |
Three point singular boundary value problem |
en |
dc.subject |
Uniqueness |
en |
dc.title |
Existence and uniqueness of a positive solution for a third-order three-point boundary-value problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.secondary |
155 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this work we study a third-order three-point boundary-value problem (BVP). We derive sufficient conditions that guarantee the positivity of the solution of the corresponding linear BVP Then, based on the classical Guo-Krasnosel'skii's fixed point theorem, we obtain positive solutions to the nonlinear BVP. Additional hypotheses guarantee the uniqueness of the solution. © 2010 Texas State University - San Marcos. |
en |
heal.publisher |
TEXAS STATE UNIV |
en |
heal.journalName |
Electronic Journal of Differential Equations |
en |
dc.identifier.isi |
ISI:000208206000003 |
en |
dc.identifier.volume |
2010 |
en |