dc.contributor.author |
Andrianopoulos, KI |
en |
dc.contributor.author |
Papadimitriou, AG |
en |
dc.contributor.author |
Bouckovalas, GD |
en |
dc.date.accessioned |
2014-03-01T01:33:28Z |
|
dc.date.available |
2014-03-01T01:33:28Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0363-9061 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20439 |
|
dc.subject |
Automatic substepping |
en |
dc.subject |
Bounding surface |
en |
dc.subject |
Critical state models |
en |
dc.subject |
Explicit integration |
en |
dc.subject |
Liquefaction |
en |
dc.subject |
Plasticity |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Automatic substepping |
en |
dc.subject.other |
Bounding surface model |
en |
dc.subject.other |
Bounding surface plasticity |
en |
dc.subject.other |
Bounding surfaces |
en |
dc.subject.other |
Centrifuge model test |
en |
dc.subject.other |
Complex stress |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Constitutive relations |
en |
dc.subject.other |
Critical state |
en |
dc.subject.other |
Critical state models |
en |
dc.subject.other |
Cyclic loadings |
en |
dc.subject.other |
Elastic region |
en |
dc.subject.other |
Element level |
en |
dc.subject.other |
Error control |
en |
dc.subject.other |
Error map |
en |
dc.subject.other |
Explicit integration |
en |
dc.subject.other |
Explicit scheme |
en |
dc.subject.other |
Finite difference |
en |
dc.subject.other |
Lateral spreading |
en |
dc.subject.other |
Liquefied sand layers |
en |
dc.subject.other |
Lode angle |
en |
dc.subject.other |
Monotonic and cyclic loading |
en |
dc.subject.other |
Monotonic loading |
en |
dc.subject.other |
New model |
en |
dc.subject.other |
Non-linear |
en |
dc.subject.other |
Noncohesive soil |
en |
dc.subject.other |
Parametric analysis |
en |
dc.subject.other |
Plasticity model |
en |
dc.subject.other |
Soil response |
en |
dc.subject.other |
Stress integration |
en |
dc.subject.other |
Centrifugation |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Constitutive models |
en |
dc.subject.other |
Critical current density (superconductivity) |
en |
dc.subject.other |
Cyclic loads |
en |
dc.subject.other |
Earthquakes |
en |
dc.subject.other |
Loading |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Soil liquefaction |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
Soils |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Geologic models |
en |
dc.subject.other |
centrifugal model test |
en |
dc.subject.other |
cohesive soil |
en |
dc.subject.other |
constitutive equation |
en |
dc.subject.other |
cyclic loading |
en |
dc.subject.other |
finite difference method |
en |
dc.subject.other |
induced seismicity |
en |
dc.subject.other |
liquefaction |
en |
dc.subject.other |
plasticity |
en |
dc.subject.other |
soil dynamics |
en |
dc.subject.other |
soil mechanics |
en |
dc.title |
Explicit integration of bounding surface model for the analysis of earthquake soil liquefaction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/nag.875 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/nag.875 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This paper presents a new plasticity model developed for the simulation of monotonic and cyclic loading of non-cohesive soils and its implementation to the commercial finite-difference code FLAC, using its User-Defined-Model (UDM) capability. The new model incorporates the framework of Critical State Soil Mechanics, while it relies upon bounding surface plasticity with a vanished elastic region to simulate the non-linear soil response. Stress integration of constitutive relations is performed using a recently proposed explicit scheme with automatic error control and substepping, which so far has been employed in the literature only for constitutive models aiming at monotonic loading. The overall accuracy of this scheme is evaluated at element level by simulating cyclic loading along complex stress paths and by using iso-error maps for paths involving change of the Lode angle. The performance of the new constitutive model and its stress integration scheme in complex boundary value problems involving earthquake-induced liquefaction is evaluated, in terms of accuracy and computational cost, via a number of parametric analyses inspired by the successful simulation of the VELACS centrifuge Model Test No. 2 studying the lateral spreading response of a liquefied sand layer. Copyright (C) 2009 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical and Analytical Methods in Geomechanics |
en |
dc.identifier.doi |
10.1002/nag.875 |
en |
dc.identifier.isi |
ISI:000282477700003 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
15 |
en |
dc.identifier.spage |
1586 |
en |
dc.identifier.epage |
1614 |
en |