dc.contributor.author |
Hizanidis, K |
en |
dc.contributor.author |
Ram, AK |
en |
dc.contributor.author |
Kominis, Y |
en |
dc.contributor.author |
Tsironis, C |
en |
dc.date.accessioned |
2014-03-01T01:33:29Z |
|
dc.date.available |
2014-03-01T01:33:29Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1070-664X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20452 |
|
dc.subject |
Fokker-Planck equation |
en |
dc.subject |
plasma boundary layers |
en |
dc.subject |
plasma confinement |
en |
dc.subject |
plasma electromagnetic wave propagation |
en |
dc.subject |
plasma fluctuations |
en |
dc.subject |
plasma pressure |
en |
dc.subject |
plasma turbulence |
en |
dc.subject |
tearing instability |
en |
dc.subject |
Tokamak devices |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Cold plasmas |
en |
dc.subject.other |
Current profile |
en |
dc.subject.other |
Density fluctuation |
en |
dc.subject.other |
Edge region |
en |
dc.subject.other |
Electron cyclotrons |
en |
dc.subject.other |
Excitation structures |
en |
dc.subject.other |
Fokker Planck |
en |
dc.subject.other |
Geometric optics |
en |
dc.subject.other |
Lower hybrid |
en |
dc.subject.other |
Magnetic fusion devices |
en |
dc.subject.other |
Neoclassical tearing modes |
en |
dc.subject.other |
Plasma current profile |
en |
dc.subject.other |
Plasma edges |
en |
dc.subject.other |
Plasma environments |
en |
dc.subject.other |
Plasma pressures |
en |
dc.subject.other |
Propagation properties |
en |
dc.subject.other |
Radio frequency waves |
en |
dc.subject.other |
Randomly distributed |
en |
dc.subject.other |
Real-space |
en |
dc.subject.other |
RF waves |
en |
dc.subject.other |
Target regions |
en |
dc.subject.other |
Theoretical models |
en |
dc.subject.other |
Wave vector |
en |
dc.subject.other |
Cyclotrons |
en |
dc.subject.other |
Diffusion |
en |
dc.subject.other |
Electric conductivity measurement |
en |
dc.subject.other |
Experimental reactors |
en |
dc.subject.other |
Fokker Planck equation |
en |
dc.subject.other |
Fusion reactors |
en |
dc.subject.other |
Magnetic field effects |
en |
dc.subject.other |
Plasma confinement |
en |
dc.subject.other |
Plasma turbulence |
en |
dc.subject.other |
Plasma waves |
en |
dc.subject.other |
Radio |
en |
dc.subject.other |
Radio waves |
en |
dc.subject.other |
Reconnaissance aircraft |
en |
dc.subject.other |
Refraction |
en |
dc.subject.other |
Scattering |
en |
dc.subject.other |
Vector spaces |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Electromagnetic wave propagation in plasma |
en |
dc.title |
Fokker-Planck description of the scattering of radio frequency waves at the plasma edge |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.3304241 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.3304241 |
en |
heal.identifier.secondary |
022505 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar, Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence-in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects-one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is important. The theoretical model is general enough to study the effect of density blobs on all propagating cold plasma waves. © 2010 American Institute of Physics. |
en |
heal.publisher |
AMER INST PHYSICS |
en |
heal.journalName |
Physics of Plasmas |
en |
dc.identifier.doi |
10.1063/1.3304241 |
en |
dc.identifier.isi |
ISI:000275028700019 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
2 |
en |