HEAL DSpace

Fountain flow of pseudoplastic and viscoplastic fluids

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.date.accessioned 2014-03-01T01:33:30Z
dc.date.available 2014-03-01T01:33:30Z
dc.date.issued 2010 en
dc.identifier.issn 0377-0257 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20454
dc.subject Bingham-Papanastasiou model en
dc.subject Fountain flow en
dc.subject Front pressure (exit) correction en
dc.subject Herschel-Bulkley model en
dc.subject Injection molding en
dc.subject Power-law fluids en
dc.subject Pseudoplasticity en
dc.subject Viscoplasticity en
dc.subject Yield stress en
dc.subject.classification Mechanics en
dc.subject.other Fountain flow en
dc.subject.other Herschel-Bulkley model en
dc.subject.other Papanastasiou model en
dc.subject.other Power law fluid en
dc.subject.other Pseudoplasticity en
dc.subject.other Fountains en
dc.subject.other Injection molding en
dc.subject.other Non Newtonian flow en
dc.subject.other Plastic molds en
dc.subject.other Plasticity en
dc.subject.other Simulators en
dc.subject.other Viscoplasticity en
dc.subject.other Viscosity en
dc.subject.other Yield stress en
dc.title Fountain flow of pseudoplastic and viscoplastic fluids en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jnnfm.2009.09.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jnnfm.2009.09.001 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Numerical simulations have been undertaken for the benchmark problem of fountain flow present in injection-mold filling. The Finite Element Method (FEM) is used to provide numerical results for both cases of planar and axisymmetric domains under steady-state conditions. The Herschel-Bulkley model of viscoplasticity is used, which reduces with appropriate modifications to the Bingham, power-law and Newtonian models. The present results extend previous ones regarding the shape of the front, which is essential in correctly capturing the flow field. In particular the centreline front position is found as a function of the dimensionless power-law index (in the case of pseudoplasticity) and the dimensionless yield stress (in the case of viscoplasticity). The pressures from the simulations have been used to compute the excess pressure losses in the system (front pressure correction or exit correction). Both shear-thinning and shear-thickening lead to more extended front positions relative to the Newtonian values. which are 0.895 for the planar case and 0.835 for the axisymmetric one. Viscoplasticity leads also to more extended front positions as the dimensionless yield stress goes from zero (Newtonian behaviour) to higher values of the yield stress. In both cases of non-Newtonian behaviour, the front tends to follow the development of the fully developed Poiseuille velocity profile, which tends towards a plug-like profile at the extreme cases of non-Newtonianness. The front pressure (exit) correction increases monotonically with the decrease in the power-law index and the increase in the dimensionless yield stress. (C) 2009 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Non-Newtonian Fluid Mechanics en
dc.identifier.doi 10.1016/j.jnnfm.2009.09.001 en
dc.identifier.isi ISI:000274272800005 en
dc.identifier.volume 165 en
dc.identifier.issue 1-2 en
dc.identifier.spage 45 en
dc.identifier.epage 55 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής