HEAL DSpace

Fuzzy rule-based system approach to combining traffic count forecasts

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stathopoulos, A en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Dimitriou, L en
dc.date.accessioned 2014-03-01T01:33:34Z
dc.date.available 2014-03-01T01:33:34Z
dc.date.issued 2010 en
dc.identifier.issn 0361-1981 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20462
dc.subject.classification Engineering, Civil en
dc.subject.classification Transportation en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Athens , Greece en
dc.subject.other Fuzzy adaptive en
dc.subject.other Fuzzy rule-based systems en
dc.subject.other Heuristic optimization en
dc.subject.other Knowledge base en
dc.subject.other Mamdani en
dc.subject.other Meta-analysis en
dc.subject.other New opportunities en
dc.subject.other Qualitative information en
dc.subject.other Real-time forecasting en
dc.subject.other Surveillance systems en
dc.subject.other Traffic counts en
dc.subject.other Traffic flow en
dc.subject.other Transportation management en
dc.subject.other Urban networks en
dc.subject.other Urban road en
dc.subject.other Artificial intelligence en
dc.subject.other Forecasting en
dc.subject.other Knowledge based systems en
dc.subject.other Optimization en
dc.subject.other Traffic surveys en
dc.subject.other Data handling en
dc.title Fuzzy rule-based system approach to combining traffic count forecasts en
heal.type journalArticle en
heal.identifier.primary 10.3141/2183-13 en
heal.identifier.secondary http://dx.doi.org/10.3141/2183-13 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Current advances in artificial intelligence are providing new opportunities for utilizing the enormous amount of data available in contemporary urban road surveillance systems. Several approaches, methodologies, and techniques have been presented for analyzing and forecasting traffic counts because such information has been identified as vital for the deployment of advanced transportation management and information systems. In this paper, a meta-analysis framework is presented for improving forecasted information of traffic counts, based on an adaptive data processing scheme. In particular, a framework for combining traffic count forecasts within a Mamdani-type fuzzy adaptive optimal control scheme is presented and analyzed. The proposed methodology treats the uncertainty pertaining to such circumstances by augmenting qualitative information of future traffic flow states (and values) with a knowledge base and a heuristic optimization routine that provides dynamic training capabilities, resulting in an efficient real-time forecasting mechanism. Results from the application of the proposed framework on data acquired from realistic signalized urban network data (of Athens, Greece) and for a diversity of locations exhibit its potential. en
heal.publisher NATL ACAD SCIENCES en
heal.journalName Transportation Research Record en
dc.identifier.doi 10.3141/2183-13 en
dc.identifier.isi ISI:000287296000013 en
dc.identifier.issue 2183 en
dc.identifier.spage 120 en
dc.identifier.epage 128 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής