HEAL DSpace

Geo-Scape, a Granularity Depended Spatialization Tool for Visualizing Multidimensional Data Sets

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sofia, K en
dc.contributor.author Margarita, K en
dc.contributor.author Marinos, K en
dc.date.accessioned 2014-03-01T01:33:34Z
dc.date.available 2014-03-01T01:33:34Z
dc.date.issued 2010 en
dc.identifier.issn 10095020 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20466
dc.subject graphical interface en
dc.subject kernel density estimation en
dc.subject multidimensional data en
dc.subject spatial metaphors en
dc.subject spatialization en
dc.subject.other data processing en
dc.subject.other data set en
dc.subject.other estimation method en
dc.subject.other spatial data en
dc.subject.other visualization en
dc.title Geo-Scape, a Granularity Depended Spatialization Tool for Visualizing Multidimensional Data Sets en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11806-010-0385-8 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11806-010-0385-8 en
heal.publicationDate 2010 en
heal.abstract Recently, the expertise accumulated in the field of geovisualization has found application in the visualization of abstract multidimensional data, on the basis of methods called spatialization methods. Spatialization methods aim at visualizing multidimensional data into low-dimensional representational spaces by making use of spatial metaphors and applying dimension reduction techniques. Spatial metaphors are able to provide a metaphoric framework for the visualization of information at different levels of granularity. The present paper makes an investigation on how the issue of granularity is handled in the context of representative examples of spatialization methods. Furthermore, this paper introduces the prototyping tool Geo-Scape, which provides an interactive spatialization environment for representing and exploring multidimensional data at different levels of granularity, by making use of a kernel density estimation technique and on the landscape ""smoothness"" metaphor. A demonstration scenario is presented next to show how Geo-Scape helps to discover knowledge into a large set of data, by grouping them into meaningful clusters on the basis of a similarity measure and organizing them at different levels of granularity. © 2010 Wuhan University and Springer-Verlag Berlin Heidelberg. en
heal.journalName Geo-Spatial Information Science en
dc.identifier.doi 10.1007/s11806-010-0385-8 en
dc.identifier.volume 13 en
dc.identifier.issue 4 en
dc.identifier.spage 275 en
dc.identifier.epage 284 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής