dc.contributor.author |
Athanasekou, CP |
en |
dc.contributor.author |
Romanos, GE |
en |
dc.contributor.author |
Kordatos, K |
en |
dc.contributor.author |
Kasselouri-Rigopoulou, V |
en |
dc.contributor.author |
Kakizis, NK |
en |
dc.contributor.author |
Sapalidis, AA |
en |
dc.date.accessioned |
2014-03-01T01:33:34Z |
|
dc.date.available |
2014-03-01T01:33:34Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0304-3894 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20469 |
|
dc.subject |
Acidic regeneration |
en |
dc.subject |
Alginates |
en |
dc.subject |
Grafting |
en |
dc.subject |
Metal retention |
en |
dc.subject |
Silanes |
en |
dc.subject |
UF/NF membranes |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Alginate layer |
en |
dc.subject.other |
Alginate solutions |
en |
dc.subject.other |
Binding capacities |
en |
dc.subject.other |
Cross flows |
en |
dc.subject.other |
Filtration process |
en |
dc.subject.other |
Flowthrough |
en |
dc.subject.other |
Grafting |
en |
dc.subject.other |
Grafting process |
en |
dc.subject.other |
Heavy metal ion removal |
en |
dc.subject.other |
Hybrid inorganic/organic |
en |
dc.subject.other |
In-process |
en |
dc.subject.other |
Membrane modification |
en |
dc.subject.other |
Metal adsorption |
en |
dc.subject.other |
Metal retention |
en |
dc.subject.other |
Multi-layered |
en |
dc.subject.other |
Regeneration capacity |
en |
dc.subject.other |
Silanisation |
en |
dc.subject.other |
Single pass |
en |
dc.subject.other |
Transmembrane pressures |
en |
dc.subject.other |
Water flux |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Alginate |
en |
dc.subject.other |
Ceramic membranes |
en |
dc.subject.other |
Heavy metals |
en |
dc.subject.other |
Hybrid materials |
en |
dc.subject.other |
Metal ions |
en |
dc.subject.other |
Metals |
en |
dc.subject.other |
Nanofiltration |
en |
dc.subject.other |
Silanes |
en |
dc.subject.other |
Ultrafiltration |
en |
dc.subject.other |
Wastewater |
en |
dc.subject.other |
Wastewater reclamation |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
Water treatment plants |
en |
dc.subject.other |
Grafting (chemical) |
en |
dc.subject.other |
alginic acid |
en |
dc.subject.other |
cadmium |
en |
dc.subject.other |
inorganic compound |
en |
dc.subject.other |
organic compound |
en |
dc.subject.other |
silane |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
alginate |
en |
dc.subject.other |
cation |
en |
dc.subject.other |
ceramics |
en |
dc.subject.other |
experimental study |
en |
dc.subject.other |
heavy metal |
en |
dc.subject.other |
membrane |
en |
dc.subject.other |
pollutant removal |
en |
dc.subject.other |
salinization |
en |
dc.subject.other |
separation |
en |
dc.subject.other |
ultrafiltration |
en |
dc.subject.other |
wastewater |
en |
dc.subject.other |
water flow |
en |
dc.subject.other |
water treatment |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
analytical parameters |
en |
dc.subject.other |
article |
en |
dc.subject.other |
ceramics |
en |
dc.subject.other |
chemical modification |
en |
dc.subject.other |
cross linking |
en |
dc.subject.other |
crossflow filtration |
en |
dc.subject.other |
hybrid |
en |
dc.subject.other |
nanofiltration |
en |
dc.subject.other |
preservation |
en |
dc.subject.other |
regeneration |
en |
dc.subject.other |
ultrafiltration |
en |
dc.subject.other |
waste water management |
en |
dc.subject.other |
Alginates |
en |
dc.subject.other |
Ceramics |
en |
dc.subject.other |
Membranes, Artificial |
en |
dc.subject.other |
Metals, Heavy |
en |
dc.subject.other |
Microscopy, Electron, Scanning |
en |
dc.subject.other |
Water Pollutants, Chemical |
en |
dc.title |
Grafting of alginates on UF/NF ceramic membranes for wastewater treatment |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jhazmat.2010.06.076 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jhazmat.2010.06.076 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The mechanism of heavy metal ion removal in processes involving multi-layered tubular ultrafiltration and nanofiltration (UF/NF) membranes was investigated by conducting retention experiments in both flow-through and cross-flow modes. The prospect of the regeneration of the membranes through an acidic process was also examined and discussed. The UF/NF membranes were functionalised with alginates to develop hybrid inorganic/organic materials for continuous, single pass, wastewater treatment applications. The challenge laid in the induction of additional metal adsorption and improved regeneration capacity. This was accomplished by stabilizing alginates either into the pores or on the top-separating layer of the membrane. The preservation of efficient water fluxes at moderate trans-membrane pressures introduced an additional parameter that was pursued in parallel to the membrane modification process. The deposition and stabilization of alginates was carried out via physical (filtration/cross-linking) and chemical (grafting) procedures. The materials developed by means of the filtration process exhibited a 25-60% enhancement of their Cd2+ binding capacity, depending on the amount of the filtered alginate solution. The grafting process led to the development of alginate layers with adequate stability under acidic regeneration conditions and metal retention enhancement of 25-180%, depending on the silane involved as grafting agent and the solvent of silanisation. (C) 2010 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Hazardous Materials |
en |
dc.identifier.doi |
10.1016/j.jhazmat.2010.06.076 |
en |
dc.identifier.isi |
ISI:000282240800080 |
en |
dc.identifier.volume |
182 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
611 |
en |
dc.identifier.epage |
623 |
en |