dc.contributor.author |
Latos, EA |
en |
dc.contributor.author |
Tzanetis, DE |
en |
dc.date.accessioned |
2014-03-01T01:33:35Z |
|
dc.date.available |
2014-03-01T01:33:35Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1021-9722 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20470 |
|
dc.subject |
Grow-up of solutions |
en |
dc.subject |
Non-local parabolic problems |
en |
dc.subject |
Porous medium |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
PARABOLIC PROBLEM |
en |
dc.title |
Grow-up of critical solutions for a non-local porous medium problem with Ohmic heating source |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00030-009-0044-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00030-009-0044-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We investigate the behaviour of solution u = u( x, t; lambda) at lambda = lambda* for the non-local porous medium equation u(t) = (u(n))(xx) + lambda f( u)/(integral(1)(-1) f(u)dx)(2) with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),- f'(s) > 0 for s >= 0 and s(n-1) f( s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter lambda, say lambda*, such that for lambda > lambda* the solution u = u(x, t; lambda) blows up globally in finite time, while for lambda >= lambda* the corresponding steady-state problem does not have any solution. For 0 < lambda < lambda* there exists a unique steady-state solution w = w(x; lambda) while u = u(x, t; lambda) is global in time and converges to w as t -> infinity. Here we show the global grow-up of critical solution u* = u(x, t; lambda*) (u*( x, t) -> infinity, as t -> infinity for all x is an element of(- 1, 1)). |
en |
heal.publisher |
BIRKHAUSER VERLAG AG |
en |
heal.journalName |
Nonlinear Differential Equations and Applications |
en |
dc.identifier.doi |
10.1007/s00030-009-0044-7 |
en |
dc.identifier.isi |
ISI:000276474000001 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
137 |
en |
dc.identifier.epage |
151 |
en |