dc.contributor.author |
Papavassiliou, V |
en |
dc.contributor.author |
Stafylakis, T |
en |
dc.contributor.author |
Katsouros, V |
en |
dc.contributor.author |
Carayannis, G |
en |
dc.date.accessioned |
2014-03-01T01:33:35Z |
|
dc.date.available |
2014-03-01T01:33:35Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0031-3203 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20471 |
|
dc.subject |
Document image processing |
en |
dc.subject |
Handwritten text line segmentation |
en |
dc.subject |
Handwritten word segmentation |
en |
dc.subject |
Support vector machines |
en |
dc.subject |
Viterbi estimation |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Connected component |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Document image processing |
en |
dc.subject.other |
Gap metrics |
en |
dc.subject.other |
Handwriting segmentation |
en |
dc.subject.other |
Handwritten document |
en |
dc.subject.other |
Handwritten text line segmentation |
en |
dc.subject.other |
Handwritten word segmentation |
en |
dc.subject.other |
Line segmentation |
en |
dc.subject.other |
Linear SVM |
en |
dc.subject.other |
Objective functions |
en |
dc.subject.other |
Text lines |
en |
dc.subject.other |
Viterbi estimation |
en |
dc.subject.other |
Word segmentation |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Image retrieval |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
Support vector machines |
en |
dc.subject.other |
Viterbi algorithm |
en |
dc.title |
Handwritten document image segmentation into text lines and words |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.patcog.2009.05.007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.patcog.2009.05.007 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Two novel approaches to extract text lines and words from handwritten document are presented. The line segmentation algorithm is based on locating the optimal succession of text and gap areas within vertical zones by applying Viterbi algorithm. Then, a text-line separator drawing technique is applied and finally the connected components are assigned to text lines. Word segmentation is based on a gap metric that exploits the objective function of a soft-margin linear SVM that separates successive connected components. The algorithms tested on the benchmarking datasets of ICDAR07 handwriting segmentation contest and outperformed the participating algorithms. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Pattern Recognition |
en |
dc.identifier.doi |
10.1016/j.patcog.2009.05.007 |
en |
dc.identifier.isi |
ISI:000270261500030 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
369 |
en |
dc.identifier.epage |
377 |
en |