HEAL DSpace

Homogeneous solutions of the electroelasticity equations for piezoceramic layers in R3

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bardzokas, DI en
dc.contributor.author Filshtinskii, LA en
dc.contributor.author Shramko, LV en
dc.date.accessioned 2014-03-01T01:33:36Z
dc.date.available 2014-03-01T01:33:36Z
dc.date.issued 2010 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20480
dc.subject Boundary Condition en
dc.subject Boundary Value Problem en
dc.subject Spectrum en
dc.subject.classification Mechanics en
dc.subject.other Bi-harmonic en
dc.subject.other Characteristic value en
dc.subject.other Elastic state en
dc.subject.other Electroelasticity en
dc.subject.other Elliptic cavities en
dc.subject.other Grounded electrodes en
dc.subject.other Homogeneous solutions en
dc.subject.other Mechanical boundaries en
dc.subject.other Piezoceramic cylinder en
dc.subject.other Piezoceramic layers en
dc.subject.other Spectrum problem en
dc.subject.other Boundary conditions en
dc.subject.other Elastoplasticity en
dc.title Homogeneous solutions of the electroelasticity equations for piezoceramic layers in R3 en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00707-009-0155-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00707-009-0155-6 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract We present a procedure for the derivation of homogeneous solutions for piezoceramic layers within the framework of electroelasticity. The proposed approach simplifies considerably the Lurié (J Appl Math Mech 6:151-169, 1942) method. Two cases of mechanical boundary-conditions for piezoceramic layers are examined, namely, when the bases are (a) built in, and (b) free from the influence of forces. In both cases, the bases of the layer are assumed to be covered by grounded electrodes. It is shown that in the case of boundary conditions of the first type and for the symmetric, with respect to the mid-surface of the layer, electro-elastic state, the homogeneous solutions do not contain any biharmonic terms.We also calculate the distribution of the characteristic values of the corresponding spectrum problems for every given type of boundary conditions. The derived homogeneous solutions can be used for solving boundary-value problems for piezoceramic cylinders and layers within the framework of electroelasticity. We illustrate our approach through a practical example considering an oblique-symmetric boundary-value problem for layers which weaken due to a side to side elliptic cavity. © Springer-Verlag 2009. en
heal.publisher SPRINGER WIEN en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/s00707-009-0155-6 en
dc.identifier.isi ISI:000271024800003 en
dc.identifier.volume 209 en
dc.identifier.issue 1-2 en
dc.identifier.spage 27 en
dc.identifier.epage 41 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής